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Abstract 
Natural language understanding is an important problem in artificial intelligence, and a challenging one. 

Analogy is a powerful tool that has been applied to a number of important AI tasks. This thesis describes 

three contributions that integrate language understanding and analogical reasoning. The first 

contribution is to demonstrate that analogical retrieval of previously stored sentence choice cases can 

be used for semantic disambiguation. This includes both word sense disambiguation and other forms of 

semantic disambiguation.  This allows a system to avoid introducing error while reading. The second 

contribution is to show that by exploiting the connectivity properties of the semantic interpretation of a 

text, a cognitive system can extract subsets of that interpretation that are useful for analogical 

reasoning tasks. The third contribution is an ontology of analogical dialogue acts that can be used to 

improve understanding of text passages that contain explicit analogies. This allows a system to make use 

of textual analogies, rather than having them be a source of noise. All three contributions are supported 

by experiments that demonstrate their utility in improving understanding. The work described in this 

dissertation is integrated into a larger cognitive architecture. 
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1 Introduction 

1.1 Motivation 

This work explores uses for analogy in learning by reading. Analogy is a powerful tool, and we present 

multiple ways to apply it to an important problem in artificial intelligence. 

One of the greatest challenges for artificial intelligence is that many reasoning tasks require extensive 

background knowledge.  Many current reasoning systems are able to operate with a minimal set of 

knowledge by constraining their domain or by offering only a limited level of explanatory depth. 

However, as we build systems that operate in broader domains, those systems will need extensive 

knowledge to ground their reasoning. Unfortunately, manual knowledge engineering is expensive, scales 

poorly and requires considerable AI expertise. The ability to build up knowledge without a human in the 

loop is critical if cognitive systems are to expand their capabilities. The difficulty of acquiring formally 

represented knowledge is known as the knowledge acquisition bottleneck (Feigenbaum, 1980). 

The vast collection of natural language text that exists in the world is one of the most potent resources 

available to cognitive agents. Not only do sources exist detailing all manner of well-defined physical 

systems, but descriptions of everyday and common-sense scenarios could potentially be used to learn 

about those areas as well. A cognitive agent able to exploit those resources would have a huge 

advantage. In 2011, IBM earned global attention when Watson, a question-answering system they 

developed, successfully defeated two human former champions on Jeopardy!, a trivia game show. 

Watson’s victory was due in part to its ability to synthesize evidence from multiple sources and over 

multiple strategies, its ability to estimate its confidence in its answers, and its general game-playing 
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strategy. One of the key resources available to the system was the Prismatic knowledge base, which was 

derived from natural language text (Fan et al., 2010; Fan et al., 2011). This suggests that learning by 

reading (LBR) as a source of knowledge holds a great deal of potential. 

Some aspects of learning by reading have been extensively explored. Unfortunately, despite recent 

progress, it remains an open problem. Natural language understanding (NLU), the process of using text 

to produce precise representations usable for reasoning, requires parsing, word sense disambiguation, 

coreference resolution, and other difficult tasks to be performed at a high level of accuracy. Knowledge 

integration, the process of connecting new knowledge with existing knowledge in order to facilitate 

reasoning, brings challenges with it as well. Some systems – including Watson – make use of very large 

quantities of source text and simple representations to partially work around some of these issues. 

However, humans are able to learn from small numbers of textual examples, often just a single source. 

This suggests that it is possible to make do with far less if reading occurs at a deeper level and existing 

knowledge can be brought to bear. Learning Reader (Forbus, Lockwood, & Sharma, 2009) and MMKCap 

(Lockwood & Forbus, 2009) have demonstrated some of the promise of this approach. 

Analogy is the process of comparing two structurally represented cases. It is fundamental to human 

cognition, playing a role in processes ranging from high-level vision to problem solving (Gentner, 1983; 

Gentner, 1989; Gentner, 2003). Overt analogies appear in instructional texts as learning aids as well. 

This suggests than analogy could be a powerful tool for cognitive agents. In my work, I have used 

analogy to assist in overcoming difficulties in learning by reading. This thesis describes three 

contributions that integrate language understanding and analogical reasoning. 
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1.2 Overview of Analogy and Reading 

Building a useful body of stored knowledge from what a system reads is a process that stands to benefit 

from analogical processing in several ways. Dealing with texts that contain explicit analogies is perhaps 

the most obvious use for analogical processing, but analogical processing can play roles in word sense 

disambiguation and knowledge organization as well. 

Analogical reasoning has been demonstrated to be useful in a wide variety of contexts, including moral 

reasoning (Blass & Forbus, 2015; Dehghani et al., 2008), inference learning (Forbus et al., 1997; Liang & 

Forbus, 2015), categorizing sketched concepts (Chang & Forbus, 2013; McLure, Friedman & Forbus., 

2015), and learning spatial prepositions (Lockwood, Lovett, & Forbus, 2008). It has been used to learn 

from sketches (Forbus, Usher, & Tomai, 2005) and to solve physical reasoning problems (Klenk et al., 

2005). In some work, analogical processing has been used to modeling human processing (Gentner & 

Forbus, 2011). 

In this work, I apply analogy in novel ways to problems within learning by reading. Claim 1 deals with the 

application of analogy to word sense disambiguation, and Claim 2 deals with organizing knowledge in 

ways that are amenable to analogy. As humans benefit from analogies in instructional texts, we might 

expect the same to be true of cognitive systems, if they have the tools to identify and process analogies 

in text. Claim 3 deals with this task. The knowledge organization strategies developed as part of Claim 2 

play a role as well. 

1.3 Claim 1: Analogical Word Sense Disambiguation 

My first contribution is to demonstrate that analogical retrieval of previously stored sentence choice 

cases can be used for word sense disambiguation. 
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Word sense disambiguation (2.1.2) is the task of selecting a lexical interpretation for a word or phrase in 

a source text. Many word sense disambiguation strategies work by looking in the training corpus to find 

similar antecedents for the current ambiguity. These antecedents are then used as evidence for 

disambiguation. The work presented here is part of that tradition. In our case, the method used to find 

the antecedents is analogical retrieval. The system generates cases that represent an ambiguity and the 

context in which it appears. It then uses MAC/FAC (2.4.3) and SAGE (2.4.4) to find the previously-

generated cases with the greatest structural similarity. It is evaluated based on its ability to select senses 

that match a gold standard. This contribution is covered in Chapter 3. 

1.4 Claim 2: Connection-Based Case Construction 

My second contribution is to show that by exploiting the connectivity properties of the semantic 

interpretation of a text, a cognitive system can extract subsets of that interpretation that are useful for 

analogical reasoning tasks. 

Large-scale reading tasks produce a very large number of statements. Working with the corpora used in 

one of the experiments, the reading system we used generated nearly as many statements as there are 

words in the source text. (Some words generate none, but some generate several). Even for a relatively 

short book chapter or web article, that represents hundreds of facts, some of which are more tightly 

related than others. The ability to build smaller cases from larger ones is useful for case-based reasoning 

tasks. For example, a chapter might discuss several types of heating system. If we want a system to 

perform a comparison between two of the types being discussed, it needs to be able to automatically 

create separate cases that each contain the information about one of the types. 

By taking advantage of relationships between the facts in an interpretation and the properties of the 

sentences that generate them, we are able to build smaller (non-exclusive) cases that are consistent and 
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coherent. This is important, because extra information acts as a distractor in many applications. The 

evaluation of this claim focuses on a realistic application for the cases produced by the case construction 

process. This contribution is covered in Chapter 4. 

1.5 Claim 3: Analogical Dialogue Acts 

My third contribution is an ontology of analogical dialogue acts (ADA) that can be used to improve 

understanding of text passages that contain explicit analogies. 

Dialogue Act Theory (Allen & Perrault, 1980; Traum, 2000) is concerned with the roles utterances play in 

discourse. An utterance identified as a Requesting Information, for example, might take the syntactic 

form of a question that makes the information requested explicit, such as “What time is it?,” but does 

not necessarily do so. The surface manifestation could instead be a statement, or it could be an indirect 

question, such as “Do you have the time?” Analogical dialogue acts are an extension of this idea. Like 

other dialogue acts, they have criteria by which they can be recognized and a set of implied 

commitments and obligations for the dialogue participants.  

Statements are classified in the ADA ontology based on the role they play in introducing or extending an 

analogy. For example, “The Earth’s atmosphere is like the roof of a greenhouse” introduces an 

analogical comparison between those two things. “The roof admits sunlight” extends the base of the 

analogy – one of the two cases being compared. Identifying the types of ADA being employed in 

different statements allows the system to construct a representation of the base and the target of each 

analogy. This in turn allows the system to actually align the parts of the analogy as a human would, 

which allows it to better understand what it has read, as measured by performance on a question-

answering task. As part of evaluation, a corpus of textual analogies was created by excerpting from a 

variety of educational materials. This contribution is covered in Chapter 5. 
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1.6 Organization of Thesis 

Chapter 2 covers background relevant to the later sections, including the learning by reading system 

used in the work, an overview of the model of analogy used, and the question answering strategies 

employed for evaluation. Chapters 3-5 cover the individual contributions, as described above. Chapter 6 

is related work and conclusions. Chapter 7 describes future work. This is followed by appendices for 

references, charts, tables, and selections from the source corpora. 

2 Background 

2.1 Learning by Reading 

Learning by reading is the process of taking in natural-language text and producing forms useful for 

reasoning. This involves natural language understanding, the process of building formally-represented 

knowledge from text. It also involves some method for organizing this information for later use and 

integrating it with existing knowledge (Allen, 1994).  

2.1.1 Natural Language Understanding 

Natural language understanding can be decomposed into several smaller tasks. These include parsing, 

semantic disambiguation, and coreference, although not all systems that extract information from text 

attempt all of these. For example, some systems use the literal words from the text as symbols in the 

knowledge (Fan et al, 2010). These systems can ignore word sense disambiguation. While this may be 

acceptable for certain applications, it is important for systems that are designed to do intensive 

reasoning on what they read to be precise and to avoid introducing error by conflating things with the 

same name. Extra error potentially interferes with reasoning tasks. It also makes it more difficult to 

diagnose less avoidable errors. For example, by representing that there are multiple senses of the word 
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“bank,” the system can make distinctions that stem from the fact that a banking institution can 

intentionally take actions, while a river bank cannot. When the system is reasoning about the sort of 

things that a river bank might be capable of, knowing that it is the sort of bank that cannot take 

intentional actions eliminates many possibilities. 

One of the aims of learning by reading in a cognitive agent is to accrue knowledge useful for reasoning 

without having to have a human expert hand-author that knowledge. Because of this, it is important to 

avoid introducing error wherever possible. While having a human identify errors as they crop up may be 

cheaper than having that human author the knowledge in formal representations from scratch (Clark et 

al, 2005), it still severely affects scalability. Some error is all but inevitable - even humans make mistakes 

while reading and while integrating what they read into their existing knowledge, and the state of the 

art in natural language systems lags behind humans in many important areas (Navigli, 2009). While it is 

not possible to catch every error, however, minimization and correction of error are still important for 

learning by reading. 

Our system builds well-connected knowledge to support reasoning. Because of this, it is useful to be 

able to achieve a high degree of recall on individual source texts. Many information extraction systems 

produce a large number of factoids by scanning over a large number of sources (e.g., Banko et al, 2007). 

This is effective for information that appears many times over many sources.  Across the entire internet, 

for example, information about national capitals appears many times. In some cases, these facts are 

connected to other facts, so some systems of facts can be constructed in that way. In other cases, 

however, information may only be present in a very small number of distinct documents. A specific type 

of heating system might only be described once or twice. A novel system that somebody is still designing 

is almost certainly only described in one place. In cases like these, a high degree of recall is critical in 
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producing a representation for reasoning. The system cannot rely on there being many phrasings of the 

same information if they do not exist. Even where a multiple sources are available, generalization and 

integration of the representations derived from those sources should work better if the representations 

are more complete and more accurate to begin with. For this reason, the reading strategies we use 

focus on building as complete a representation as possible from source texts, even where there are 

additional computational costs. 

2.1.2 Knowledge Organization and Integration 

Organizing knowledge that is derived from natural language texts is a task that has not been as 

thoroughly explored than deriving that knowledge to begin with, but is still very important for 

reasoning. Even for simple lookup tasks, knowing when and under what circumstances facts hold is 

important. Any task that involves using larger amounts of information at once, as a case, requires 

additional organization. For example, if the system is to compare one mechanical system to another, it 

needs representations of those systems. Automatically constructing such representations is a challenge 

addressed in Chapter 4. 

Knowledge integration is the task of connecting new knowledge to knowledge that the system already 

has. This is important if the system is to be able to effectively use knowledge from multiple sources. 

While knowledge integration is not a task directly tested by any of the evaluation strategies in the work 

in this thesis, it is a future goal for my work in case construction, and informs the representation 

decisions. 

2.2 EA NLU 

We use the Explanation Agent Natural Language Understanding system (EA NLU; Tomai & Forbus, 2009) 

as our natural language understanding system. Syntax is handled using Allen’s TRAINS (1994) parser, a 
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bottom-up chart parser. The syntactic analysis produced by the parser is stored declaratively by the 

reasoning system using predicates that extend ResearchCyc. The relevant concepts of the Cyc ontology 

are described in Section 2.2.1. 

EA NLU represents parse, word sense, and coreference ambiguities as choice sets (Section 2.2.4). Once 

choices in these choice sets have been selected, they are used to build a sentence interpretation for the 

sentence. The interpretation process uses Discourse Representation Theory (Kamp & Reyle, 1993), as 

described in Section 2.2.2. 

Figure 1 illustrates the reading pipeline used by the system, and where my major contributions occur 

within it. The colored areas represent  
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2.2.1 Cyc and EA NLU Representations 

EA NLU generates semantic interpretations as structured representations using Cyc collections and 

predicates. For example, from the sentence “A dolphin eats a fish,” the system can generate the fact 

(isa dolphin5332 Dolphin), among others. In that fact, dolphin5332 is a discourse variable 

generated by the system to represent the dolphin. isa is a predicate. Predicates take one or more 

arguments and relate them. isa indicates that the entity in the first argument position - 

dolphin5332 - is a member of the collection Dolphin. A collection is a group of things. All 

members of the collection Dolphin are dolphins, and all dolphins are members of that collection. 

Collections are arranged in a hierarchy, connected by genls statements. For example, (genls 

Dolphin SeaMammal) means that Dolphin is a subcollection of SeaMammal. Any entity that is a 

member of the collection Dolphin is a member of the collection SeaMammal. Colloquially, we say 

that Dolphin genls to SeaMammal.  The opposite of genls is spec; Dolphin is a spec of 

SeaMammal. 

The system extends the representations provided by Cyc slightly to represent things like parse features, 

which Cyc does not have built-in representations for. These predicates are used by the system to reason 

about things like whether a semantic choice is compatible with a particular parse. 

Discourse variables are generated for each of the entities introduced in the text the system reads. This 

includes events, which are reified in the interpretation. For example, (isa eat5642 

EatingEvent)appears in the interpretation of the sentence, with eat5642 representing the eating 

event. An exception to this occurs when the system has lexical information connecting the word or 

phrase to a unique entity that it already knows about. For example, for “Plato eats a fish,” the system 
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will not generate a new discourse variable for “Plato.” Rather, it will use Plato, as that symbol already 

exists in the knowledge base and there is lexical information connecting it to the word “Plato.” 

Most of the lexical rules for verbs in Cyc use Davidsonian representations. Davidsonian representations 

reify the event, and then use role relation predicates to connect the event to the actors that participate 

in it. For example, the full representation of “eats” in “A dolphin eats a fish” is: 

(and  

   (isa eat5642 EatingEvent)  

   (performedBy eat5642 dolphin5637) 

   (consumedObject eat5642 fish5672)) 

In this representation, eat5642 is the eating event. The participants are dolphin5637 and 

fish5672.  The roles they play in the event are described by their role relations. performedBy 

indicates that the actor intentionally performed the action, and consumedObject indicates that the 

object was affected and destroyed. Cyc has an extensive hierarchy of role relations, but about ten role 

relations account for a heavy majority of the facts produced by the language system. 

EA NLU produces interpretations first on the sentence level. For each sentence in a text, the 

interpretations of each of the words are combined into a sentence interpretation case. In many cases, 

the parse contributes additional structure, often in the form of organizing the word-level lexical 

interpretations into discourse representation structures (DRS; see 2.2.2). From there, discourse-level 

interpretation processes combine the sentence level interpretations into one large interpretation, called 

a discourse interpretation. At this point, the system also performs coreference resolution (see 2.2.3).  

Discourse-level interpretation processes can also be used to do operations such as identifying qualitative 

relationships between quantities. 
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The names generated by the system for discourse variables, for reading trials, and for sentence, 

discourse, and DRS case names are slightly complex. The system needs to ensure that the names of 

these objects are unique, while still providing enough English in the name that the nature of the symbol 

can be determined by looking at it, for debugging purposes. This results in somewhat lengthy names in 

some cases, such as Discourse-3623363883-2172.  Throughout this document, these names 

have been simplified slightly for readability.  

One of the goals of EA NLU is that it remain reasonably fast and general-purpose. For this reason, it does 

not bring complex reasoning to bear on the parsing process. It produces parses and semantic choice sets 

that can be ruled out by looking for type contradictions or with more sophisticated reasoning, but does 

not do that automatically while parsing or building choice sets. Disambiguation heuristics (Section 2.2.6) 

allow the system to disprefer choices that result in sematic contradictions. 

2.2.2 Discourse Representation Theory 

Discourse representation theory (DRT; Kamp & Reyle, 1993) forms the basis for EA NLU’s semantic 

interpretation process. The system uses the parse and semantic information to build up discourse 

representation structures (DRS).  Each DRS is a case containing one or more facts. These facts describe 

relationships between entities, collections that those entities belong to, and other DRSs. Each sentence 

has a sentence DRS that contains facts that represent the semantics of that sentence.  Sentence DRSs 

can also have constituent DRSs. These handle scoping, including conditionals and counterfactuals. For 

example, the sentence “If the sun is low, the amount of solar radiation on the solar collector is low” 

mentions a height for the Sun and an amount of solar radiation. It does not say that the Sun actually is 

low or that the amount of solar radiation is low, however. If the system produced facts that said that 

Sun actually is low, it would reach incorrect conclusions. For that reason, rather than placing that 
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information directly in the sentence DRS, the system creates two new constituent DRSs, one for the 

antecedent of the statement and one for the consequent. The sentence DRS contains a fact of the form 

(implies DRS-02 DRS-03). This is illustrated in Figure 2. Constituent DRSs are also used to 

handle negation and hypotheticals.  

 

While DRT is a core part of how the language system operates, and thus plays a role in all of the work 

described in this thesis, it is particularly relevant for case construction, as described in Chapter 4. As we 

discuss in Section 4.3.2, the organization of facts into DRSs, if handled properly, allows the system to 

avoid introducing certain types of error during case construction.  

2.2.3 Coreference 

Determining which entities in a text refer to the same thing is a difficult challenge, but one that is 

important to address. Without the ability to identify something across multiple sentences, it is difficult 

to build up structures of well-connected knowledge.  This is important for connection-based case 

construction (see Chapter 4), as the construction strategies rely on connections between facts. One such 

connection is two facts mentioning the same entity. It is also important for analogical dialogue act 

Figure 2. Discourse Representation Theory 
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processing (see Chapter 5), as being able to keep the entities straight is important for building a good 

mapping between the cases. In a greenhouse effect analogy, the system would get lost if it believed that 

several different greenhouses were being discussed because the word “greenhouse” was mentioned 

several times in the text. It would similarly get lost if it believed that all instances of light being absorbed 

were the same event. There are three types of coreference addressed by EA NLU.  

The first is direct reference. This is when the same object is overtly mentioned multiple times. Each 

mention of something in a source text triggers the system to generate a new discourse variable for that 

thing. For example, in the initial reading of “A penguin catches a fish. The penguin shares the fish with its 

young,” two separate discourse variables would be generated for the penguin, one for the first mention 

and one for the second. It falls to coreference resolution to determine that the two penguins mentioned 

are the same penguin. EA NLU looks for potential references for any common noun introduced with 

“the,” like “the penguin.” Its strategy for direct reference is to select the most recent valid referent, 

going back up to five sentences. If two possible referents appear in the same sentences, the subject is 

preferred over other possibilities. A small number of additional constraints that handle containment and 

possession also guide direct reference coreference.  

The second type of reference is pronominal reference. In most instances where a pronoun is used, it 

refers to another entity or case also present in the discourse. For example, in “A dolphin gives birth to 

live young. It nurses the young dolphins,” the first “it” refers to the same thing as “a dolphin.” The 

system’s strategy for pronominal reference is to pick the first valid referent in the previous sentence, 

and only in the previous sentence. Gendered pronouns – “he” and “she” – will not refer to things that 

are known to be the other gender. Pronouns prefer to match subjects where possible. Pronouns also 

need to match their antecedents in number. “It” will not refer to a plural referent, like “dolphins,” and 
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“they” will not refer to a singular referent. (The system does not currently recognize the singular 

“they.”)  “This” and “that,” when used as a noun (as in “This causes the temperature to fall,” but not as 

in “This act impressed this judges,” where “this” is a determiner) are handled specially. In these cases, 

“this” and “that” refer to the case for the entire previous sentence. 

The final type of reference handled by the system is verb reference.  Verbs corefer to verbs in the 

previous sentence if they are the same type of event and there are no role relation conflicts. For 

example, in “Water flows from the bucket. The water flows to the ground,” the second instance of 

“flows” refers to the first. The object filling the objectMoving slot in both cases is the same, because 

the second “water” refers to the first. The first sentence puts the bucket in the fromLocation-

Underspecified role, and the second puts the ground in the toLocation-Underspecified 

role. If the second sentence was “The water flows from the faucet,” the two instances of “flows” 

would not corefer, as there are two different things in the fromLocation-Underspecified slot. 

Reference is transitive. If any sort of coreference would cause an entity to refer to second entity that 

already refers to a third, the first entity instead refers to the third.  

It is easy to think of examples where the strategies outlined above will fail. In addition to linguistic 

oddities like the dummy pronoun in constructions like “It is raining,” there are plenty of standard cases 

where they do not work. Sometimes pronouns refer more than one sentence back, or refer to 

something other than the subject, even when the subject matches in number and gender. Full 

coreference is a difficult problem, and one that humans do imperfectly.  The goal with our coreference 

system, as with all of our version of simplified English, QRG-CE (see Section 2.2.4), is to ensure that a 

variety of common cases are handled, that there are reasonable ways to say most things, and that the 

system is simple enough that the output is not astonishing for someone familiar with the system. The 
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coreference system as described here is not intended to be complete or foolproof, nor is it what is 

under primary evaluation in any of the contributions. Applying knowledge or more sophisticated 

reasoning to the coreference task might allow for more accurate coreference, but that is outside the 

scope of this thesis. The coreference mechanism used by the system was extended for the purposes of 

this work, but only within the general setup of the existing system. It is not tailored to be specifically 

suitable for the tasks described here. A more complete specification of how the coreference system 

works is found in Section A of the appendix. 

Anaphora resolution in general is a problem with many facets (Elango 2005). Full language 

understanding would require the ability to handle reference to things that are implied but not explicitly 

mentioned, phrases whose referents change with time (“the president”), and so on. The coreference 

system used in the work described here is sufficient for experimental purposes and is relatively simple, 

covering several very common and important types of reference. A coreference subsystem that takes 

greater advantage of the reasoning capabilities of the system would be a valuable addition to the 

system. 

2.2.4 QRG-CE and Simplification 

For our work we have chosen to use texts written in simplified English. The English we use is called QRG-

CE. Our lexicon is not limited, but our grammar covers only certain constructions. This requires 

simplifying many sentences. Sentences of greater length or those that employ less common 

constructions are more likely to require simplification. The simplified English texts are still fully readable 

English; the simplification process simply reconfigures and splits sentences into ones which use 

supported grammatical structures. For example, the source sentence “As for the solar heater, the sun 

has not yet risen” was simplified to “The sun has not yet risen on the solar heating system.”  Table 16 in 
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the appendix contains a paragraph from the simplified corpus. Importantly, simplification does not 

eliminate ambiguities. Certain heavily controlled languages, such as ACE (Fuchs, Kaljurand, & Kuhn , 

2008) and PENG (Schwitter, 2002) are designed to eliminate ambiguity, but QRG-CE is not of that type. 

For practical purposes, simplification has several benefits. It allows us to explore deep understanding 

without having to tackle the other open-ended NLP problems that usually come along with that. It also 

allows for end-to-end learning by reading. Simplification of texts prior to processing is not uncommon in 

the field. Many practical applications make use of controlled language; commercial machine translation 

systems for equipment manuals are one example. Simplified text can allow for authoring of knowledge 

in a form that is much simpler and more robust than writing propositions by hand. For example, Clark et 

al. (2005) describes Computer Processable Language (CPL), a set of restrictions on sentence construction 

that simplify machine reading while still allowing relatively natural input. Our language system is 

considerably more flexible than CPL. It can process a greater variety of sentence structures, allows 

pronouns, and does not make use of specific keywords within sentences. QRG-CE, like CPL, takes a 

naturalist approach (Clark et al., 2010). That is, it is intended to be a simplified version of uncontrolled 

natural language processing, rather than a formal language that maps unambiguously onto propositional 

logic. Both word sense and parse ambiguities are present in our simplified texts. In fact, the 

simplification process does not directly seek to eliminate them at all – it simply converts from 

unsupported grammatical structures to supported ones. 

One goal of system development has been to reduce to degree to which simplification is required and to 

reduce the specificity of what simplification is required. The better the system can do with less 

simplification, the less effort and expertise is required to simplify. It also allows for better performance 
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on texts which have not been simplified. Additionally, the simplification process introduces some degree 

of doubt into the results due to the hand-processing that must be done by the experimenter.  

My early work with analogical dialogue acts (Chapter 5) was particularly demanding of the texts it works 

over. It required fairly complete and fairly specific constructions for detection. As our attempts to make 

these steps more robust proceed, the need for specificity in simplification is reduced. 

2.2.5 Representing Ambiguity 

The system generates choice sets to represent ambiguities. EA NLU creates choice sets for three types of 

ambiguity. The first type is the semantic choice set. These are ambiguities about which semantics should 

go in the sentence interpretation. Word sense ambiguities are one source of semantic choice sets. For 

example, the word “star,” when used as a noun, generates a choice set with four choices, each of which 

is a fact. One choice is the fact (isa star5323 FamousHuman), where star5323 is a discourse 

variable generated to represent that entity. This indicates that there is some famous human in the 

interpretation of the sentence.  Other choices in the set are similar, but for other senses of the word 

“star.” Semantic choice sets might have multiple choices in them even when there is no word sense 

ambiguity, if there is ambiguity stemming from which combinations of role relations should be included. 

This is most common with verbs. A semantic choice set normally covers a span of a single word, but they 

can also cover recognized multi-word strings, such as “Bill Gates” or “solar energy.” 

The second type of choice set generated by the system is the parse tree choice set. Each sentence with a 

complete parse has one such choice set. It contains all of the parses that were generated for the 

sentence. Parse ambiguities include prepositional phrase attachment and other scoping issues, along 

with structural ambiguity. (“Heat flows”, for example, could be a statement indicating that heat streams 

from one place to another, or a command to warm up a group of instances of something moving from 
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one place to another. The latter is semantically improbable, but the parser does not know that.) 

Multiple parse ambiguities are often present in a single sentence. When this occurs, the number of 

possible combinations causes the number of choices in a parse tree choice set to grow very large. Parse 

choices and semantic choices are interdependent. Selecting a parse can disable certain semantic choices 

and vice versa. 

It is important to note that while the primary motivating factor for the choice set-based architecture is 

representing ambiguities, the system does represent unambiguous things, including monosemous words 

(such as “porpoise”) and the parses of sentences with only one valid parse (such as “The porpoise 

sleeps.”) as choice sets. We refer to choice sets with only one choice as singleton choice sets. Singleton 

choice sets are generated for two reasons. First, it allows for a consistent architecture across both 

ambiguous and unambiguous words and parses. Second, a singleton choice set does not necessarily 

mean that that choice is correct. For example, in the sentence “A child plays with a beach ball,” there 

will be a choice set generated that includes only (isa beach2856 Beach). It would not be correct 

to select that choice; there is no beach under discussion. The correct interpretation involves selecting 

(isa beach-ball3217 Ball) for the two-word span “beach ball,” which has its own choice set. 

The system also represents coreference choices (Section 2.2.3) as choice sets, where the potentially 

valid referents form the choices. However, because the strategies used to generate and select from 

these choice sets are so different than the strategies used to generate and select from parse tree and 

semantic choice sets, generally “choice set” will be used in this thesis to refer only to parse and semantic 

choice sets. 
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2.2.6 Resolving Ambiguity 

Resolving semantic ambiguity is done primarily through a system built into the Companion (Section 2.3) 

called the disambiguation harness. The disambiguation harness was created to support the work 

presented in this thesis. Briefly, the disambiguation harness works by applying a set of disambiguation 

heuristics to parse or semantic choice sets. Each heuristic assigns a score to each choice in each choice 

set. The scores from each heuristic are then summed. The system then creates a list of all of the choices 

in the sentence from all of the parse and semantic choice sets. It moves through each choice in order 

from highest score to lowest, and makes that choice if that choice has not yet been ruled out. A choice 

might be ruled out because another choice in its choice set is already selected. It might also be ruled out 

if an incompatible parse tree is already selected, or if all compatible parse trees have been ruled out. 

The disambiguation harness is designed for easy extensibility, and supports both general-purpose and 

targeted heuristics. All of the heuristics used in this thesis are designed to be general-purpose. 

Heuristics vary in complexity. An example of a very simple heuristic is preferPossesion. This 

heuristic votes weakly in favor of semantic choices that contain expressions that denote possession, 

such as (possessiveRelation dolphin3124 head3342). This is not a particularly reliable 

heuristic, which is why it gets only a weak vote by default. For semantic choices that do not contain 

possession expressions, it simply does not vote. The result is that possession expressions are more likely 

to be chosen. Heuristics can be much more complex, however. The analogical word sense 

disambiguation scheme described in Chapter 3, for example, is implemented as a disambiguation 

heuristic. 

The disambiguation harness not only allows the system to define which heuristics will be applied to a 

disambiguation task, it allows for individual weighting of heuristics. It also stores the votes each heuristic 
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made on each choice. This allows heuristic weighting to potentially be learnable. This is outside the 

scope of this thesis – in all experiments described here, the disambiguation harness was run with the 

default weights. The system also allows choices to be manually selected by the user. This is used to 

generate the gold standard interpretations for some of the evaluation metrics used here. 

2.2.7 EA TMS 

In order to support the work presented in this thesis, I reconfigured EA to run on a truth maintenance 

system (TMS; Forbus & de Kleer, 1993). This makes it such that the system automatically detects 

incompatibilities between semantic choices and other semantic choices, and between semantic choices 

and parse tree choices. The incompatibilities it detects are “hard” incompatibilities. For example, in the 

sentence “The man saw a bird with a telescope,” the TMS prohibits the semantic choice that the bird 

has the telescope if there is a parse tree selected that attaches the prepositional phrase “with a 

telescope” to “saw.” In instances where every valid option but one has been ruled out, it infers that the 

last one must be true. 

It is important to note that the EA TMS only prevents the system from making syntactically incompatible 

choices. It does not rule out “soft” incompatibilities that come from the semantics themselves. For 

example, it permits an interpretation of “Bats eat insects” that has the “baseball bat” sense of the word 

“bats.” This is despite the fact that with further reasoning it might be able to determine that, in most 

models of reality, baseball bats do not literally eat anything. This sort of more extensive reasoning would 

be useful for detecting errors, but it is more expensive, and we want things that operate during the 

parsing process to be fast. 
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2.2.8 Readings and Source Texts 

As part of the development of the techniques described in this thesis, we extended the reading plans 

used by Companions (Section 2.3) to make use of an organized system for tracking what the system 

reads. Formally, a source text is a particular section of text. A web article or a chapter of a physics 

textbook might be a source text. Two different sections of text are considered different source texts, 

even if they overlap. For example, a textual analogy excerpted from the physics textbook chapter is a 

separate source text from the chapter taken as a whole. 

A reading is a single attempt to process and interpret a source text. Multiple readings of a source text 

may produce different interpretations if different parameters are applied to the reading. For example, if 

a different set of disambiguation heuristics are used or different discourse-level interpretation processes 

are run, the results will be different even if the source text remains the same. Changes to the grammar, 

lexicon, or coreference rules can also affect the final interpretation. 

When the system stores the information it learns by reading a source text, that information is not simply 

placed into the knowledge base to be retrieved by anything that might be searching the KB. It is tied to 

the reading that generated it. This is important, as information learned by reading sometimes contains 

errors, most often as a result of parsing or word sense disambiguation failures. Storing information this 

way also allows the system or a human working with it to easily compare what is learned during 

different readings. 

In addition to storing the interpretation itself, the system also stores information about the parameters 

under which the reading was run. While it is impractical to preserve the entire state of the reading 

system, the system stores many of the more flexible parameters along with timing data and accuracy 
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information (if a gold standard is available). This allows for analysis of the effects of different 

parameters. 

2.3 Companion Cognitive Architecture 

A cognitive architecture is a system designed to integrate multiple cognitive processes. The end goal is 

to build (and sometimes to model, depending on the architecture) a mind. A wide variety of cognitive 

architectures exist, employing a range of strategies and operating at a range of levels, from very low-

level reflexive response tasks through sophisticated reasoning and planning, all the way to social 

reasoning. A key part of what defines cognitive architectures is that they are single systems designed to 

handle many tasks. This distinguishes them from many machine learning systems that focus on a single 

task or a very narrow set of tasks. 

Our goal with the work described in this thesis is to enable and bootstrap a software social organism. 

With that end in mind, all of the mechanisms have been built into the Companion cognitive architecture 

(Forbus, Klenk, & Hinrichs, 2009). The Companion architecture is an agent-based system. There are 

several advantages to integrating the methods we describe into a system that incorporates multiple 

reasoning processes, and in particular into a Companion.  

First, doing so gives the methods access to powerful reasoning tools, including the FIRE reasoning engine 

(Forbus et al., 2010) and an HTN planning system. EA NLU is integrated into Companions, and the 

architecture includes plans that coordinate reading, disambiguation, and storing away knowledge that is 

learned. Over the course of designing the methods and running the experiments described here, I 

extended many of these plans and procedures to add additional support. This included the creation of 

features like the disambiguation harness and EA TMS. This is a second advantage of working in an 

integrated system used in multiple lines of research – the systems that are designed to support the work 
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can be used in those other projects. Multiple lines of inquiry making use of component systems 

encourages general-purpose design over specialized single-purpose units.  

The Companion architecture offers several specific advantages that make it a good fit for this research. 

First, it provides support for analogy. It contains plans that support both basic analogical mapping 

through SME (Section 2.4.2) and more sophisticated analogical reasoning processes such as 

generalization (through SAGE; Section 2.4.4) and retrieval (through MAC/FAC; Section 2.4.3). It is 

structured around the idea that analogy is a very important part of cognition. 

One goal of the Companion system is end-to-end reading – going from a source text to an interpretation 

that can be integrated with existing knowledge and evaluated or used for practical tasks. This provides a 

motivation for learning by reading techniques. Rather than being designed in a vacuum only to maximize 

evaluation metrics in isolation, methods that are built into full reading systems can be applied to 

realistic, challenging tasks. This can supplement traditional evaluation metrics or provide means of 

evaluating efficacy on problems that cannot be measured directly. 

All of the methods described in this thesis are modular. None specifically require a Companion, and 

could be ported to other architectures. They are contingent on having a parser that produces structured 

representations available, and both AWSD and ADA make use of SME. However, those things could be 

(and in some cases already are) included in other cognitive systems, so the methods described here are 

not strictly tied to Companions. 

2.3.1 Architecture Structure 

The Companion architecture supports a wide variety of cognition tasks, and detailing its structure and 

capacities in full is beyond the scope of this thesis.  
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A Companion uses a distributed agent architecture. The agents communicate with each other using 

KQML messages. Each has access to its own working memory, which holds the results of short-term 

processing and to a shared knowledge base, the core of which (for the work presented here) is the 

ResearchCyc KB. A relatively small number of agents are used in most Companion configurations. The 

agent types that play a role in reading are the following: 

The Session Manager provides a user interface to the other agents and tracks their health. While it does 

not do any of the heavy lifting involved in reading text or evaluating the system’s understanding, it 

receives the user commands to do those things. 

The Executive coordinates the other agents. It takes the commands from the session manager and then 

dispatches other agents to do them. 

The Interaction Manager is responsible for the bulk of the reading process. It has access to EA NLU, so all 

of the parsing, choice set construction, and interpretation creation is its responsibility. Its working 

memory is where the parse, choice set, and interpretation information is stored, so if any of those things 

are needed by other agents, they must be communicated to those agents or stored in a shared 

knowledge base. The interaction manager also runs the disambiguation harness (Section 2.2.6), making 

it responsible for word sense disambiguation as well. 

The Session Reasoner is used for domain reasoning. Most relevantly for the work described in this thesis, 

it is responsible for the question answering system used for evaluation, including parameterized 

questions (Section 2.5.1). 
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2.4 Analogy 

All of the methods described in this thesis make use of analogy. This section introduces the model of 

analogy used in this work as well as computational implementations of analogical mapping (SME), 

generalization (SAGE), and retrieval (MAC/FAC). 

2.4.1 Structure mapping theory 

The model of analogy we use is structure mapping theory (Gentner, 1983). Structure mapping builds 

correspondences between two structure cases. It aligns the entities in the base with entities in the 

target based on the similarity of the higher-order structure surrounding them, as well as their simple 

features. Mappings are made according to three constraints: 

 The tiered identicality constraint ensures that two statements can match only if their predicates are 

identical. For example, (largerThan Nucleus Electron) can map to (largerThan Sun 

Earth), but not (brighterThan Sun Earth), as largerThan and brighterThan are 

different predicates. 

The parallel connectivity constraint ensures that if two statements match, then their arguments match. 

For example, (largerThan Nucleus Electron) can match (largerThan Sun Earth) if 

and only if Nucleus maps to Sun and Electron maps to Earth. 

The one-to-one mapping constraint ensures that entities can only match one other entity, so if 

Electron maps to Earth, it cannot also map to Moon. 

Within these constraints, mappings are given a score based on their systematicity, which is the extent to 

which higher-order structures in the description can be mapped to each other and their structural 
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similarity. 

 

Candidate inferences about the target are then drawn to fill in structure that is present in the base but 

not the target. A candidate inference is estimated to be more likely if there is greater structural support 

for it. Candidate inferences are allowed to hypothesize the existence of new entities, if necessary.  In the 

example in Figure 3, structure mapping allows for the hypothesis that the difference between the 

temperatures of the two objects in the target causes a flow between them.  There is a large body of 

psychological evidence for structure mapping. It is a cognitively grounded theory.  However, the work 

described in this thesis does not attempt to model human cognition; it only uses structure mapping as a 

Figure 3. A mapping between “The difference between the depth of the bucket and the depth of the hole causes a flow 

from the bucket to the hole,” and “There is a difference between the temperature of the brick and the temperature of the 

room.”  

 

The system draws candidate inferences about the target based on the structure of the base. 
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tool. Nevertheless, the fact that structure mapping appears to play a role in human reasoning suggests 

that it may be a good fit for AI tasks. 

Structure mapping prefers structural matches – matches where higher-level relationships match to each 

other. An example of this is shown in Figure 4. The Causes relationship is a higher-level relationship, as it 

coordinates multiple other relationships. 

 

The specific choice of structure mapping as a model of analogy does affect the design of all of the 

methods described in this thesis, especially Analogical Dialogue Acts, and underpins SME, MAC/FAC and 

SAGE. If a different model of analogy were to be used, the methods might look very different.  

The analogy ontology (Forbus, Mostek, & Ferguson, 2002) is a formal ontology of analogy based on 

Structure Mapping Theory. It extends ResearchCyc, and provides a vocabulary for describing and 

reasoning about analogy. It is used in my Analogical Dialogue Act theory, as described in Chapter 5. 

2.4.2 SME 

The Structure Mapping Engine (Falkenhainer, Forbus, & Gentner, 1989; Forbus, Ferguson, & Gentner, 

1994) is an implementation of structure mapping theory. It takes as input a base case and a target case, 

Figure 4. A mapping between “The difference between the depth of the bucket and the depth of the hole causes 

a flow from the bucket to the hole,” and “The difference between the temperature of the brick and the 

temperature of the room causes a flow from the brick to the room.”  
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each expressed declaratively. It produces one to three mappings. A mapping consists of three parts. The 

first is a set of correspondences between elements of the base and elements of the target. The second is 

a similarity score based on systematicity. The third is a set of candidate inferences. SME can draw 

candidate inferences bidirectionally – both from the base to the target and from the target to the base, 

and does so in all of the work described in this thesis. This means that even if a reading system using 

SME accidentally misidentifies which case is the base and which is the target, it can still produce 

candidate inferences about the domain the system is learning about. SME uses a greedy merge 

algorithm to produce the mappings in polynomial time (O(n
2
(log n))).   

Candidate inferences can represent information the system learns by having worked through the 

analogy. In the example in Figure 3, the system learns that the temperature difference causes a flow 

between the two objects. Candidate inference can also be thought of as salient differences between two 

cases. They are things that are true in the base that may or may not be true in the target. We use 

candidate inferences in this latter way to identify salient differences between cases in the evaluation of 

the case construction algorithms in Chapter 4. Candidate inferences are allowed to hypothesize the 

existence of new entities that are parallel to ones in the other case. These hypothesized entities are 

called skolems. For example, in the solar system/atom analogy, the system might hypothesize the 

existence of a force in the atom that corresponds to gravity, and that has the same relationships with 

the nucleus and electrons that gravity does with the sun and the planets. It would be correct to 

hypothesize the existence of that force, as it (electromagnetic force) actually exists. It would be 

represented as <skolem gravity524> in the match. 

In addition to the base and target, SME can optionally accept a set of match constraints. The work 

described in this thesis makes use of two such constraints.  
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• Required correspondence constraints are expressed as (requiredCorrespondence 

?base-element ?target-element). These constrain the match by only permitting 

mappings in which those two elements are in correspondence. For example, 

(requiredCorrespondence Nucleus Sun) will only permit mappings where 

Nucleus and Sun correspond. 

• Excluded correspondence constraints are expressed as (excludedCorrespondence 

?base-element ?target-element). These constrain the match by only permitting 

mappings in which those two elements are not in correspondence. For example, 

(ExcludedCorrespondence Electron Moon) will only permit mappings where 

Nucleus and Moon do not correspond. 

Match constraints are important for analogical dialogue act processing, as one of the benefits of 

identifying ADAs is the generation of these constraints. They are also used in the evaluation of 

connection-based case construction. 

SME is a component in the models of analogical retrieval and generalization, described below, which are 

used in our methods.  These models have all been used to simulate a variety of psychological 

phenomena (e.g., Dehghani et al., 2008, Friedman & Forbus, 2008), and they have also been used in 

performance systems (e.g., Hinrichs & Forbus, 2012; Lockwood & Forbus, 2009). This makes them 

reasonable starting points for the work we describe here. 

2.4.3 MAC/FAC 

Many are Called/Few are Chosen (MAC/FAC; Forbus, Gentner, & Law, 1995) is a model of similarity-

based retrieval. It takes a probe case and a case library and finds the cases in the case library that are 

most similar to the probe. A case library is simply a group of cases; every SAGE generalization context is 
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a case library. MAC/FAC operates in two stages, as its name suggests. The first stage, MAC, is a coarse 

but fast method. Content vectors are automatically computed for each case, consisting of frequency 

information about the predicates in the case. MAC finds the cases from the case library whose content 

vectors are most similar to the probe case’s content vector. It returns the three best cases. FAC, the 

second stage, compares each of those three cases to the probe case using SME. It returns the one with 

the highest similarity score, although it can return multiple cases if their similarity scores are very close. 

In the work described in this thesis, the methods only ever use the top result returned by MAC/FAC. 

MAC/FAC is used directly in analogical word sense disambiguation (Section 3), where it provides the 

primary mechanism by which the method selects which prior case to use as a precedent. While 

MAC/FAC is not used directly in the case construction strategies described in Chapter 4, the utility of 

analogical retrieval for reasoning motivates the task. 

2.4.4 SAGE 

The Sequential Analogical Generalization of Examples (SAGE) model is a generalization system. It is an 

extension of SEQL (Kuehne et al., 2000). SAGE takes a stream of cases as input and organizes them 

within a generalization context. A generalization context contains generalizations of similar cases. When 

cases are combined into a generalization, SAGE replaces non-identical entities with symbols that denote 

arbitrary individuals and starts to accumulate frequency information for each matching statement.  For 

example, if a case that contains the statements 

(performedBy eat15 dolphin12) 

(isa eat15 EatingEvent) 

(isa dolphin12 Dolphin) 

 

indicating that a dolphin ate something, is combined with a case that contains the statements 
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(performedBy eat19 porpoise16) 

(isa eat19 EatingEvent) 

(isa porpoise16 Porpoise) 

the resulting generalization will contain the statements 

(performedBy <GenEnt 1>  <GenEnt 2>)    Probability = 1.0 

(isa <GenEnt 1> EatingEvent)            Probability = 1.0 

(isa <GenEnt 2> Porpoise)               Probability = 0.5 

(isa <GenEnt 2> Dolphin)                Probability = 0.5 

A GenEnt is a generalized entity. These are entities that differed between different parallel statements 

in the generalization. Statements not present in every case in the generalization have probabilities less 

than 1. When SAGE adds additional to a generalization, it updates the frequency information for 

statements in that generalization (Halstead & Forbus, 2005). Statements with probabilities below a set 

filtering threshold (unrelated to the generalization threshold) are filtered out of the generalization.  

The generalization context also contains ungeneralized examples, single cases that are not part of any 

generalization. When a new case is encountered, SAGE uses analogical retrieval to find the most similar 

generalizations and ungeneralized examples among those already in the generalization context. If it is 

most analogically similar to a generalization and that similarity score is above a certain assimilation 

threshold, it is added to that generalization. If it is most similar to an ungeneralized example and the 

similarity score is above the threshold, it is combined with that example into a new generalization. If it is 

not sufficiently similar to any of the generalizations or examples, it is just added as a new ungeneralized 

example. 

There may be a large number of generalizations in the generalization context. The ability to maintain 

multiple generalizations is useful for handling disjunctive concepts, and the ability to maintain 

unassimilated examples is useful for dealing with exceptions and edge cases. A novel and important 
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feature of SAGE is that it typically achieves robust performance after only a dozen cases for each 

concept, making it faster (in terms of number of examples required) than most statistical learners. 

SAGE is used in the Analogical Word Sense Disambiguation work described in Chapter 3. Generalizing 

across training examples allows for more compact storage of the training data with no loss in 

disambiguation performance. 

2.5 Evaluation with Question Answering 

Question answering is the task of inferring an answer from a knowledge store, given a question. If the 

question is posed in natural language, question answering has a natural language understanding 

element as well. Question answering is a very common method for evaluating the performance of AI 

systems as a means of evaluating learning. 

Question answering is itself a full avenue of research, and comes with its own set of challenges. I use 

question answering for evaluation in both the case construction work and the analogical dialogue acts 

work, as described in Sections 3.7 and 5.4, respectively. I use open-ended question answering, rather 

than multiple-choice or true/false questions. 

2.5.1 Parameterized Questions 

Parameterized question answering is a special question answering task where the questions are 

generated by filling in slots in question templates (Forbus et al., 2007). It can be used to generate a large 

number of questions for testing purposes. Parameterized question generation requires a set of topics. 

This topic list can be generated by collecting all of the entities in a reading, or that list can be 

automatically or manually filtered. For the purposes of the work we discuss here, topics are entities 

mentioned in what has been read by the system. For example, if the system reads about a solar heating 
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system, a topic might be the Sun, the solar heating system at a particular time of the day, or a particular 

flow in the system. 

The parameterized question generation system has a set of parameterized question templates, which 

are manually authored. These templates are used to generate questions from the topics. Each template 

has one or more collections as slots. A topic that belongs to that collection can fill that slot. For example, 

the “What causes this?” template has one slot, for an Event. For each Event in the set of topics, the 

system asks what caused the event. Because many events are caused by something, this is a useful way 

to test comprehension and look for holes in the system’s knowledge.  

A parameterized question template may have multiple slots. For example, the “Compare and contrast” 

template has two slots, both for members of the collection Thing. (Events and abstract concepts are 

still members of that collection, so this is less restrictive than it may sound.) For each pair of things in 

the topic list, the system will compare and contrast those things. For a large topic list, this is a huge 

number of comparisons; for this reason, the system supports using a list of topic pairs, rather than a list 

of individual topics. Only topics that are paired with each other are used together by the parameterized 

question generation system. For example, consider a task where the system has read about dolphins 

and porpoises. [dolphin, porpoise] is an interesting topic pair for a compare and contrast task; there are 

interesting similarities and differences between those two concepts. [ocean, tail] is less likely to produce 

interesting similarities and differences, and should probably not be used as a topic pair even though 

both of those concepts appear in the source text. 

Each parameterized question template has one or more solve goals associated with it. These use the 

Solve system built into fire. Solve is an incremental and/or problem solver. It uses solve suggestions that 
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define the nodes in the and/or tree. These can use the reasoning capabilities of the FIRE engine, as well 

as special outsourced predicates that are handled programmatically. 

Parameterized questions have several benefits as an evaluation metric for reading comprehension. They 

can be used to measure where there is no clear gold standard, when few or no external questions are 

available, or when the questions that are available require knowledge that is out of scope. They also 

have some challenges as an evaluation metric. The correct answer still has to be authored. This can be 

time-consuming and imprecise for questions with complex answers, such as compare and contrast 

questions. The ceiling performance is not well-defined, because in many instances, the answer to a 

particular parameterized question is not present in the text. For example, the parameterized question 

generation system knows that a Person has biological parents. When it knows that something the 

system has read about is a Person, it generates a question asking who they are. However, that 

information is not found in most texts talking about most Person entities. Even a human reader would 

not be able to tell you who the parents of a person mentioned in a text are if the text does not mention 

those parents. 

Connection-based case construction uses parameterized questions for evaluation, as described in 

Section 3.7. It uses an enumerated list of topic pairs, which it uses for a compare and contrast task, and 

a curated list of similarities and differences to be found. This avoids the ambiguous ceiling effect 

described above, as all of the similarities and differences to be found are things a human reader could 

find from the passage. Because Solve can access SME through outsourced predicates, it is capable of 

analogical comparison. 
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3 Analogical Word Sense Disambiguation 

3.1 Goals 

Word sense disambiguation is the task of selecting the correct sense of a word from a sense inventory 

that specifies alternate meanings for the word. Most existing WSD techniques rely on massive labeled 

training corpora, which are time-consuming to build and which do not necessarily generalize to other 

domains (Navigli, 2009). A WSD scheme that can operate at a satisfactory level with much less training 

data has the potential to allow for better scalability to new domains. Additionally, some domains may 

have a limited amount of training data available to begin with, so making the most of that is important 

for WSD. 

Humans do not require anything like the quantity of training data required by most modern WSD 

systems to achieve much better performance. We believe that using cognitively-inspired strategies can 

allow a system to produce good results with dramatically less data. Analogical Word Sense 

Disambiguation (AWSD) is a demonstration of this. The work detailed in this chaper was first described 

in Barbella and Forbus (2013). 

3.2 Word Sense Disambiguation 

Word sense disambiguation is the task of selecting the correct semantics for a given word in a natural 

language text. For example, consider the word “star” in the sentence “He quickly emerged as a league 

star and his scoring entertained crowds.” This sentence is drawn from a Wikipedia article about Michael 

Jordan, the legendary basketball player. In this sentence, the intended meaning is the “famous person” 

sense of the word “star.” A system that selected the “astronomical object” sense of the word might run 

into trouble when it attempted to do further reasoning on the interpretation. Integrating the 

interpretation with existing knowledge would also be more difficult. 
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Word sense disambiguation is a difficult task, even for people: Navigli (2009) reports that, even for 

instances of “coarse-grained, possibly binary, sense inventories,” interannotator agreement only 

reaches about 90 percent for human annotators, and on more fine-grained sense inventories it is 

between 67 percent and 80 percent. 

Senses are usually drawn from a sense inventory – a collection of possible senses for a given word. The 

most widely used sense inventory is WordNet (Gale, Church, & Yarowsky, 1992; Miller, 1995; Navigli, 

2009). Most work in word sense disambiguation involves making selections on the simple sense level. 

That is, the sense options for each word are just the type of thing or event the word represents. This 

strategy has some limitations when applied to a learning by reading task. It does not naturally produce 

or use the kind of rich conceptual information needed to support reasoning. Structured, relational 

representations are important to extract from language for reasoning.  For example, understanding a 

verb in a sentence involves inferring how it connects the constituents to the event or relationship 

expressed by the verb.  

For these reasons, our work uses the ResearchCyc ontology as a sense inventory, rather than WordNet. 

ResearchCyc was not designed specifically for this purpose, but offers several advantages. The senses 

associated with words in ResearchCyc are complete fact statements, rather than simple senses. 

Particularly for verbs, the senses in ResearchCyc are extended interpretations, which support reasoning. 

For example, the interpretation for “entertained” in “He quickly emerged as a league star and his scoring 

entertained crowds” includes not only (isa entertain3767 EntertainmentEvent), but also 

(spectators entertain3767 crowd4077) and (doneBy entertain3767 

score3575). These latter two statements relate the entertainment event to the actors participating 
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in it. An interpretation choice that lacked those statements would be incomplete. We use this broader 

definition of word sense disambiguation in the work presented here.  

The second limitation we wish to overcome is that most existing techniques rely on large hand-

annotated corpora for training.  For example, the Brown Corpus (Francis & Kučera, 1964) contains one 

million words, and the Wall Street Journal Corpus (Paul & Baker, 1992) contains 30 million words. In 

contrast, people manage to learn to read without using massive amounts of input labeled in terms of 

their internal representations.  Much of the difference can certainly be accounted for by reasoning and 

application of real-world knowledge, something that current WSD systems do very little of, especially in 

a domain-general way. Those capabilities are likely necessary to achieve true human-level performance. 

Understanding how to learn to read without such large annotated corpora is an important problem, 

both scientifically and to make the construction of large-scale cognitive systems truly practical.   

Sense inventories can be more or less fine-grained. Oftentimes words have a cluster of closely related 

meanings, and different sense inventories might lump these together or split them apart. For example, 

the word “star” can mean “famous person,” but has a closely related meaning in “principal actor in a 

production.” ResearchCyc is moderately fine-grained. It contains fewer total (atomic) senses on average 

than WordNet, but still contains a very large number of concepts. 

3.2.1 Benefits of Word Sense Disambiguation 

Word sense disambiguation serves several important roles in a learning by reading context. The first is 

to distinguish concepts that have the same name in natural language. For example “star” can mean 

“famous person” or “astronomical object.” A system that hopes to do reasoning benefits from 

distinguishing those, as they have very different properties. A famous person can make decisions and do 

other things that involve intentionality, while a star in space cannot. That is important if a system is 
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trying to determine why an event involving a star occurred. It is also important for learning what 

concepts are related – an agent is related to a famous person, while a planet is related to an 

astronomical object. 

The second role that WSD plays is unification. Just as there can be several senses for a single word, there 

can be several words that map to a single sense in the sense inventory. For example, both “star” and 

“celebrity” can refer to a famous person. In general, things that we learn about stars (in that sense) are 

true about celebrities and vice versa, because the words are nearly synonymous, at least in their 

“famous person” senses. 

Resolving words to concepts in an existing ontology assists with reasoning in other ways. For example, 

ResearchCyc knows that all instances of FamousHuman are also instances of Person. It also knows a 

lot of information about the collection Person, so knowing that something is a FamousHuman nets 

the system a lot of free additional information about that thing. This can be used for operations like 

error detection. If the interpretation indicates that a star is playing a role in an event that must be 

played by a human, but it is a Star rather than a FamousHuman, something has likely gone wrong 

with either the interpretation of which sense of “star” was meant or with the system’s interpretation of 

the event. WSD is also important for knowledge integration. When new knowledge about topics is 

derived from text, it is important that it can be related to existing knowledge on those topics. 

3.2.2 Strategies for Word Sense Disambiguation 

Word sense disambiguation has been extensively explored. Its utility, its importance, and the relative 

ease with which it can be evaluated fairly objectively has made it a popular problem within the field of 

NLU. Navigli (2009) provides an excellent overview of the state of the field; we will only cover the 

strategy distinctions here that are most relevant to the work presented in this thesis. 
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One large division in WSD strategies is between supervised and unsupervised techniques. Supervised 

techniques use labeled training data to train a classifier, and then use the trained model to make new 

disambiguation choices. The biggest advantage of this is that these methods generally achieve the best 

performance. The disadvantage is that producing labeled training data in the quantities demanded by 

many WSD algorithms, as mentioned above, is extremely labor-intensive and requires some expertise. 

Furthermore, training data prepared using one type of corpus – news articles, blog posts, medical 

research articles – may not generalize to other types of text. Unsupervised strategies do not require this 

training, but also tend to perform at a lower level. Additionally, unsupervised strategies that build their 

own classes, rather than using a predefined sense inventory, can make it more difficult to hook the 

semantic representations into an existing knowledge store. This can be worked around by seeding the 

system with classes, however. 

Within the category of supervised techniques is a smaller category of techniques that operate by 

preserving all of the training data and disambiguating by finding the most similar prior example, and 

then making the same disambiguation choice as that example. We will call these example-preserving 

strategies. These contrast with systems that use the training data to build a less penetrable classifier, 

such as a neural network or a support vector machine. There are two ways in which example-preserving 

strategies can vary. The most important one is the similarity measure. For example, a simple example-

preserving strategy might look at which prior case has the most nearby words in common with the 

current ambiguity. A more complex one might integrate that measure into a larger similarity function 

that also takes other factors into account. The second axis along which example-preserving strategies 

can vary is the manner in which they choose which of the most similar examples to use. The simplest 

option is to choose only the one that is most similar, and make the same choice that it did. A k-nearest 

neighbor strategy lets the top k prior examples vote. 
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Example-preserving strategies have a few advantages. The first is that they are easily inspectable. The 

reason that a disambiguation choice was made will always be that a certain set of examples were the 

most similar. Provided that the similarity metric itself is reasonably comprehensible, this allows for 

human-readable explanations of why a choice was made. The second advantage of example-preserving 

strategies is that they are easily extensible. When new training data is encountered, extending the 

training set is as simple as just adding the new examples to the library of cases. It is not necessary to 

train a new classifier. This makes them appropriate for systems that slowly accumulate new training 

information over time, as a cognitive agent might. 

3.3 Approach 

The fundamental idea behind analogical word sense disambiguation is that choices made in similar prior 

circumstances are good sources of evidence for what to do in understanding new sentences. As 

discussed above, this is a class of WSD strategies that is somewhat common. At a high level, the system 

uses analogy to construct generalizations of training examples and analogical retrieval to choose the 

most similar from among those generalizations and examples in order to disambiguate new choices 

later.   The analogical processing techniques we employ are based on structure-mapping theory (Section 

2.4.1). Analogical matching is performed by the Structure-Mapping Engine (Section 2.4.2), which takes 

two structured, relational inputs, a base and target. The system uses MAC/FAC (Section 2.4.3) and SAGE 

(Section 2.4.4) for analogical retrieval and generalization, respectively. In training, cases are constructed 

representing the ambiguities and the choices made for those ambiguities. These cases contain 

information about the choice and the context in which it appears. During operation, cases are 

constructed for new ambiguities, and the system seeks the most structurally similar cases from the 

training set.  
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Our work differs from prior research in that it adopts conceptual representations for its sense 

inventories, and uses relational representations instead of only feature-based representations for its 

cases. Additionally, it is unique in making use of structure mapping. We assume there are other methods 

of disambiguation to fall back on when analogies are not available, and that successful instances of 

disambiguation are used to incrementally provide cases that can be used in analogical learning.  For 

evaluation, we use hand-made disambiguation choices to prime the pump, to focus on what analogy can 

contribute. 

The AWSD system is built into the Companion cognitive architecture (Section 2.3). Specifically, it is 

implemented as a disambiguation heuristic within the disambiguation harness (Section 2.2.6). It is the 

most complex and ambitious heuristic currently developed for that system, but it is also capable of 

handling disambiguation tasks that simple no-training heuristics cannot handle at all. 

3.4 Method 

The method begins with a training corpus that has already been accurately disambiguated (such as one 

disambiguated by hand or with abduction or other WSD methods, and then checked and corrected.) It 

reads through each sentence in this corpus. 

Ambiguities it encounters while reading are represented as choice sets (Section 2.2.4). For each choice 

set, the system constructs a case. It populates the case with information about the choice and the 

context in which it appears. The information contained in these representations and the form they take 

is the greatest factor in determining how the system operates. These are discussed in Section 3.5. 

The cases are then added to generalization contexts using SAGE (Section 2.4.4). For word sense 

generalization contexts, each generalization context contains all of the examples built around choice 

sets that share a word and a sense. For example, all of the choice sets over the word “star” for which the 



51 

 

 

 

sense FamousHuman was the correct choice will appear in a generalization context together. The choice 

sets for which the correct choice was Star-AstronomicalObject will appear in a separate generalization 

context, even though the word was the same. Similarly, cases built around choice sets attached to the 

word “celebrity” will appear in their own generalization context even if the selected choice is 

FamousHuman. These generalization contexts together form a generalization context family (GCF), one 

for each word. That is, the word “star” has a GCF, “can” has a separate GCF, and so on. A diagram of the 

system operation is show in Figure 5. 

 

 

Generalizing from experience is an important form of information compression. While one of the goals 

of the AWSD system is to enable satisfactory performance with relatively little training data, it is also 

important that, as the system acquires more training data over time, it can incorporate that information 

in a compact way. While the average generalization size produced by the system in our experiments 

means that generalization only compresses the population library by a modest amount (see Table 4 in 

Section 3.8.1), it should help with scalability somewhat over longer periods. 

Figure 5. A schematic diagram of how the AWSD method operates.  

  

“Star” -- Star 

 

 

“Star” -- FamousHuman 

 

 
Generalization Contexts 

FamousHuman 

New 

Case } 

Source Text “Star” 

Star?       FamousHuman? 

Analogical 

retrieval 

 

Disambiguation 

Cases 

SAGE 



52 

 

 

 

An important parameter that influences the system’s generalization strategy is the generalization 

threshold. Recall that the generalization threshold is the degree of similarity that two cases must have 

before SAGE will merge them. The higher the generalization threshold is, the more similar two cases 

have to be before they are merged. The system was tested with three different generalization 

thresholds. With a generalization threshold of 0.2, the system eagerly merges cases. With a threshold of 

0.4, it is more conservative with merging. A generalization threshold of 1.0 means that the system will 

only merge identical cases. These cutoffs were determined to produce interestingly varied results 

though experiments on pilot data, but there is nothing exceptional about the exact numbers used. The 

effects of these strategies are discussed in Section 3.8.2. 

Once we have accumulated a set of generalization contexts from a training corpus, the system can 

attempt to use them to disambiguate new texts. When a fresh choice set is encountered in a new 

sentence, a case is constructed for that choice set. This is done using the same method that was used to 

generate the training cases. This case is used as a probe to MAC/FAC (Section 2.4.3), as described in 

Section 3.6.  

3.5 Representations 

As mentioned above, the largest factor in the system’s performance is what facts are chosen to 

represent an ambiguity. Throughout this section, we will use the example sentence “The heat flows to 

the object with the lower temperature,” constructing a case for the word “flows” in that sentence. 

Deciding the form such a case takes involves determining what information will be represented and how 

that information will be represented. In particular, many sorts of information can be represented as 

either features or relations. For example, consider a fact that represents that “heat” is the subject of the 

sentence. One possible representation is (subjectOfSentence heat). That representation is nice 
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and simple, but that is not the only possible representation, nor is it necessarily optimal. In particular, it 

may not be very well-suited for use with MAC/FAC. In the MAC stage, it will make almost no difference 

at all. If every case has exactly one subjectOfSentence fact, that does not help MAC distinguish 

between them. In the FAC stage, it potentially helps a little, but not very strongly. Because heat is just 

an entity in that representation, (subjectOfSentence heat) can match to any 

subjectOfSentence fact in SME, provided that heat is not matched to any other incompatible symbol. 

Instead, logical functions are used to reify information about constants in order to improve sensitivity in 

analogical retrieval.  Neither SME nor MAC/FAC, by design, is sensitive to specific constants that are the 

arguments to relations, such as heat.   By redundantly encoding relational information as attributes 

(e.g., (subjectOfSentenceOfChoiceSetFn (TheList heat)), analogical retrieval picks up 

on information it would otherwise miss. The representation (isa ChoiceSet-227 

(subjectOfSentenceOfChoiceSetFn (TheList heat))) brings in the name of the choice 

set, but more importantly it makes the fact a feature. This means that during the MAC stage, other cases 

where “heat” was the subject of the sentence are more likely to be retrieved, because they will also 

have facts that look like (isa ?choice-set (subjectOfSentenceOfChoiceSetFn 

(TheList heat))). 

The reason that “heat” is represented as (TheList heat), rather than just heat, is that the subject 

of a sentence can be multiple words long. For example, if “Bill Gates” was the subject of the sentence, 

the representation would be (isa ChoiceSet-227 (subjectOfSentenceOfChoiceSetFn 

(TheList bill gates))). The actual words are used here, rather than the semantic 

interpretation of the words, because the interpretation is not available when building the probe cases 

for disambiguation. 
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There are a large number of possible features that could be represented. Information about the parse 

tree the ambiguity appears in, the semantics of the other words in the sentence, and notable sentence 

structure features – such as whether the ambiguous word has a prepositional phrase attached to it – are 

all things that might be stored. Similar information about nearby sentences could also potentially be 

stored. Given that there are multiple possible ways to represent the facts that we do choose to include, 

the space of possible representations is very large. 

It is likely that there are diminishing returns on including additional things in the case. For example, it is 

unlikely that detailed parse information for sentences many sentences away in the source text will be 

relevant. Very large cases also risk including a lot of things that are just noise, which has the potential to 

interfere with both retrieval and generalization. 

In the method described here, we only consider features local to the sentence that the ambiguity 

appears in. There are a few advantages to this. First, it allows the cases to be constructed from isolated 

sentences, which is useful for corpora that consist of those. Second, it allows for disambiguation on 

sentences that appear without context. 

As mentioned above, probe cases for new ambiguities are constructed in the same fashion as training 

cases are. Some statements in the case – including the one that indicates the correct choice, for 

example – may not be computable without knowledge of what the correct choice is. This means that the 

probe cases and the training cases look a little different. This does not pose a problem for the system. 

The system does not rely on the presence of every possible feature. In many cases, certain features 

simply do not exist. For example, the feature that records when a prepositional phrase is attached to the 

ambiguous word is simply omitted if there is not one.  
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The representations used were arrived at by starting with a small set of features drawn from prior work 

– in particular, the inclusion of the other words in the sentence as features was motivated by the 

frequency with which this is incorporated into other WSD techniques. From there, we added additional 

features that form a structured representation of the context that the choice appears in. These were 

tested on a small set of sample data. It is not the intent of the system that different features should be 

used for different tasks, and the set of features presented here is designed to be general-purpose. 

The parameters that control which features are included in the case are stored in the knowledge base. 

This allows for easy experimentation and extensibility. Additionally, this setup will allow the system to 

someday reason about the strategies it is using.  

3.5.1 Features Used 

In our example sentence, “The heat flows to the object with the lower temperature,” each word in the 

sentence that generates a choice set will have a case generated for it. Consider the construction of the 

case for the word “flows”. This case includes a set of statements that describe the context in which this 

decision appears, which incorporates semantic, surface, and parse information. These statements 

include: 

• A statement indicating the word sense used. For this example, the word sense includes both the 

sense itself, FluidFlow-Translation, and a role relation statement that connects the 

action to one of its actors, (primaryObjectMoving flow-22523 heat-22505). In a 

case for a noun, this will often be simpler, and only indicate that the word belongs to a 

particular collection (e.g., FamousHuman); 

• Statements describing the choices selected for the other words in the sentence (e.g., 

ThermalEnergy). These statements encode the semantics of the sentence. Most nouns 
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generate statements describing what something is, such as (isa heat-22505 

ThermalEnergy), while other words generate more complex statements, such as 

(possessiveRelation object-22573 temperature-22651). 

This provides a very simple form of semantic information about the context. Other facts record surface 

information: 

• A statement indicating that the word covered by the choice set is flows;  

• Statements indicating the other words in the sentence (heat, lower, etc.). Note that we do 

not exclude words from a list of stop words, as common words such as prepositions may be 

correlated with particular senses of a word. 

Information from the syntactic analysis of the sentence is also included: 

• The subject of the sentence (heat); 

• The part of speech of the word (verb); 

• If the word appears in a compound noun phrase, the word(s) with which it appears are also 

recorded.  In the sentence  “He emerged as a league star and his scoring entertained crowds,” 

for the word “star” this would be (league); 

• If the word has a prepositional phrase attached to it, the preposition; in this example, “to the 

object…” is attached to “flows”, so (to) is recorded.  

• If the word appears in a prepositional phrase, the preposition. 
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Table 1 illustrates a portion of the case generated for the decision about “flows” made in our example 

sentence, “The heat flows to the object with the lower temperature.”  

3.6 Retrieval and Evidence Production 

Given a new occurrence of a word to disambiguate, our technique uses MAC/FAC to retrieve relevant 

prior cases and/or generalizations, if any.  Recall that each generalization context covers a word plus a 

particular sense for that word.  The union of all generalization contexts involving that word, for all of the 

senses seen so far, constitutes the case library.  In the example above, the system uses a separate 

generalization context not only for different senses of the word “flows”, including <(TheList 

flows), (isa ?entity FluidFlow-Translation)>,  but for different combinations of role 

relations, such as <(TheList flows), (and (isa ?entity FluidFlow-Translation) 

Table 1: A portion of a disambiguation case; only 10 out of a total of 32 facts are shown. The first three facts shown 

concern conceptual information. Nine facts out of 32 concern semantics, with the rest encoding syntactic or lexical 

information. Full case in Section 0. 

;;; Subset of the case generated for “The heat flows to the object with the lower  

;;; temperature.” 

;;; The word sense used, FluidFlow-Translation, and a role relation connecting the 

;;; action to one of the actors. 

(selectedChoice ChoiceSet-22757 Choice-22758  

  (and (isa flow-22523 FluidFlow-Translation)  

       (primaryObjectMoving flow-22523 heat-22505))) 

;;; Other choices made in the sentence. 

(otherSentenceSelectedChoice (isa heat-22505 ThermalEnergy))  

(otherSentenceSelectedChoice   (possessiveRelation object-22573 temperature-22651)) 

;;; The word covered by the choice set 

(isa ChoiceSet-22757 (ChoiceSetForPhraseFn (TheList flows))) 

;;; Other words that are present in the sentence – “heat” and “lower”. 

(isa ChoiceSet-22757 (wordInSentenceOfChoiceFn heat)) 

(isa ChoiceSet-22757 (wordInSentenceOfChoiceFn lower)) 

;;; The subject of the sentence 

(isa ChoiceSet-22757 (subjectOfSentenceOfChoiceSetFn (TheList heat))) 

;;; The part of speech of the word 

(isa ChoiceSet-22757 (partOfSpeechOfChoiceSetFn verb)) 

;;; Preposition attached to the word 

(isa ChoiceSet-22757 (hasPPWithLeadingPrepositionFn to)) 
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(primaryObjectMoving ?entity ?object)>. In our example, the second of these is the 

correct sense; the system will be successful if it retrieves a case or generalization that had been part of 

that generalization context. 

The candidate inferences generated by SME during retrieval are examined to determine which word 

sense choice is best supported by experience.  Given the way that cases are encoded, these inferences 

will include the decision associated with that case or generalization.  The system uses that prior decision 

to generate evidence for the current decision. Returning to our example, when the occurrence of 

“flows” in “The heat flows to the object with the lower temperature” is used as a probe, the system 

retrieves a generalization of four previously seen cases, including “Despite this, volume flows toward the 

can with the low depth” and “Volume flows to the lower depth.” This generalization is retrieved because 

of all of the generalizations and examples in the GCF, it is the most similar. The analogy between these 

generates a candidate inference of the form  

     (selectedChoice  

     ChoiceSet-16374 

     (:skolem Choice-35146) 

     (and 

      (isa (:skolem flow34459) FluidFlow-Translation) 

      (primaryObjectMoving ?entity (:skolem heat34459))) 

suggesting the FluidFlow-Translation sense that also includes primaryObjectMoving, which is 

correct in this case.  The reasons that the generalization is chosen include not only a shared subject and 

several shared words, but a similar structure – the sentence and the generalization both have a 

prepositional phrase starting with “to” attached to the word “flows”. Table 2 shows a portion of the 

match between the two cases. 
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In some situations, the system retrieves an incorrect example; for example, while attempting to 

disambiguate the first “depth” in the sentence “The depth of the can differs from the depth of the other 

can,” the system retrieves the sentence “Depth differs from volume.” While those sentences are similar 

structurally and have other features in common, the first refers to a specific depth of a particular object, 

while the second refers to the general concept of depth. The distinction is relatively subtle, but as the 

representations are different internally, the system does not select the best choice based on this 

retrieval. 

Because a sense that appears more frequently will have more examples in its generalization context, this 

process automatically incorporates sense frequency as a factor. That is, if a sense is very common in the 

training corpus, there will be more generalizations and examples available for it to match. 

3.7 Evaluation 

Evaluating WSD is fairly straightforward. The senses chosen by the system can be compared to a gold 

standard. Generating such gold standards can be time-consuming and requires familiarity with the 

representations being used, but they provide a sensible and objective measurement. The gold standards 

Table 2: A portion of the match from the retrieval made with the probe case for “The heat 

flows to the object with the lower temperature” in experiment 2. (GenEntFn 10 

flows) is a generalized entity that was created when cases were merged during training. 

Some representations have been simplified for space and readability. 

Base Case Retrieved Target 

((hasPPWithLeadingPrepositionFn to)  

 ChoiceSet-3583789884-50713) 

((hasPPWithLeadingPrepositionFn t0)  

 (GenEntFn 10 flows)) 

(possessiveRelation object6515 

temperature6596) 

(possessiveRelation can6515 

temperature6596) 

((ChoiceSetForPhraseFn (TheList flows))  

 ChoiceSet-3583789884-50713) 

((ChoiceSetForPhraseFn (TheList flows))  

 (GenEntFn 10 flows)) 

((wordInSentenceOfChoiceFn lower)  

 ChoiceSet-3583789884-50713) 

((wordInSentenceOfChoiceFn lower)  

 (GenEntFn 10 flows)) 
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used for evaluation are created by having the reading system process the text to be used as a test 

corpus, and then manually selecting appropriate semantic choices. It is necessary to use human-verified 

selections for this to maximize the accuracy of the gold standard.  

There are some subtle challenges involved in using gold standards as an evaluation, however. The first is 

defining what constitutes satisfactory performance on a particular disambiguation task. It is easy to 

compare methods to each other by comparing their performance against each other, but that does not 

measure whether any or all of the methods are actually good enough to be fit for a particular purpose.  

Another complication is that in many cases there is not a single unique correct disambiguation choice, 

particularly in sense inventories that are fine-grained or hierarchical, as ResearchCyc is. For example, the 

English word “cat” can refer to either specifically domestic house cats or to the broader cat family that 

includes big cats, wildcats, and cheetahs as well. In some cases, the distinction may not matter, but in 

other cases it may. Even trickier are instances where one of the senses is a more specific version of 

another. For example, consider the word “flow” in “Water flows into the storage tank.” Suppose two of 

the semantic choices are FluidFlow-Translation and Movement-TranslationEvent. The 

former is better, as it is more specific, but the latter is by no means incorrect. In a case like this, it might 

be correct to award credit for either answer, or it might be correct to award partial credit for the worse-

but-still-correct answer. Similarly, there are cases where one choice subsumes another. For example, 

two of the choices for “temperature” in “The water’s temperature rises” are 

(isa temperature6206 Temperature) 

and 
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(and  

  (temperatureOfObject water6185 temperature6206)  

  (isa temperature6206 Temperature)) 

The first choice is not wrong per se, but it is significantly less useful than the second. It is true that the 

water’s temperature is an instance of Temperature, but for most reasoning purposes, the fact that it 

is the temperature of the water is likely to be relevant. In a case like this, we would likely want to only 

credit the system if it selected the second of the two choices. Cases like these mean that it is best to 

frame WSD not as a task of selecting a single correct option from a group of otherwise incorrect ones, 

but as a task of selecting better options from a group of choices of varying quality. To avoid introducing 

additional layers of human judgment into the evaluation, the system was only given credit for choosing 

the very best choice from the choice set, and received no credit for selections that are technically 

correct but incomplete, or only partially correct. 

An additional difficulty is that, for many ambiguous words, one sense dominates the others in 

frequency, even over broad topic areas. In many corpora, for example, the “clear atmospheric gas” 

sense of the word “air,” used as a noun, might be many times more common than the “impression or 

manner” sense of the word (as in “He had an air of mischief about him.”) A system that simply always 

guessed the “atmospheric gas” sense of the word would likely achieve a quite high overall precision, but 

is of little use as a disambiguation system. 

A final difficulty that occurs when evaluating WSD is that human judgments about word sense are not 

completely consistent. As noted above (Navigli ,2009), interannotator agreement ranges from 60% to 

90% depending on the granularity of the sense inventory. In addition to raising questions about what it 

means for a machine to do better than this, it also introduces a degree of uncertainty into gold standard 

comparisons as a metric.  
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3.7.1 Baselines 

The most basic possible baseline that WSD performance can be compared to is chance. At a minimum, a 

WSD algorithm should be able to do better than a system selecting senses uniformly at random from the 

sense inventory. A much tougher baseline is one where the system always selects the most common 

sense of the word in the training corpus.  As described above, many word sense distributions are very 

lopsided, so this is often a very difficult baseline to beat in terms of absolute precision, despite the fact 

that it is not very helpful as an actual disambiguation strategy. Finally, we can compare to the 

performance of systems like CatchWord (Hearst, 1991), which operate under similar constraints. 

3.8 Experiments 

Our primary hypothesis is that analogical processing over relational representations can provide 

accuracies comparable to other word sense disambiguation algorithms.  Since prior research has 

focused on very different sense inventories, representations, and texts, performance comparisons must 

be made with care.  Nevertheless, they provide a useful component-level benchmark, since accuracy is a 

desirable property in all cases.  To provide evidence for this hypothesis, we conducted two experiments.   

3.8.1 Experiment 1: Binary Word-Sense Task 

The first study tests the ability of our technique to distinguish between senses of a specific word. As 

noted above, our word sense disambiguation task uses a very different kind of sense inventory than 

traditionally used, but distinguishing noun senses provides the closest comparison.  

To test performance on a traditional word sense disambiguation task, we created a test corpus of 104 

sentences that used the noun “star” in either the sense of a famous person or an astronomical object, as 

per our running example. The sentences were drawn from the English and Simple English Wikipedias, 
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and simplified when necessary to fit the syntax that EA NLU handles (Section 2.2.4).  The sentences were 

roughly evenly divided between the two word senses.  The full corpus appears in the appendix. 

We used five-fold cross validation, with approximately ten examples of each word sense in the test set, 

with the remainder of each corpus providing the set of cases used as input for training.
1
 This experiment 

is not intended to model a normal reading experience; the senses of “star” do not occur with the same 

frequencies in this corpus as they do in more natural corpora, and are effectively drawn from many 

different documents. Indeed, in a normal reading situation, the fact that polysemous words that recur 

within a document typically carry the same sense (Gale, Church, & Yarowsky, 1992) can be exploited. 

This experiment is intended to test performance in situations where a comparable number of examples 

of two different senses exist in the training set.  

Table 3 summarizes the results of three conditions, varying only in assimilation threshold.  By setting the 

threshold to 1.0, SAGE only stores examples, as otherwise cases must identical to be assimilated at that 

threshold.  The 0.2 condition is the opposite extreme, leading it to form generalizations more readily, 

while the 0.4 condition is more conservative.  Importantly, there is no significant difference in accuracy 

between these three conditions, suggesting that, for this task, more aggressive generalization strategies 

can be used without impacting performance.  Accuracy is significantly and substantially different from 

chance (50%) in all conditions.  

                                                           
1
 The “astronomical body” sense appears with slightly greater frequency in the corpus because a greater number 
of sentences that use that sense also use it more than once. 
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The accuracy achieved is in the range reported for state of the art algorithms with more traditional word 

sense inventories.  Hearst (1991) also used a method involving storing syntactic and semantic 

information from training data for disambiguation, and hence is the most comparable system to ours. Of 

the six words that Hearst used, accuracies after 40 examples ranged from 75% to 85%,
2
 and from 82% to 

88% on the two words for which 50 or more examples were used.  Thus although our results are not 

directly comparable due to differences in training data, test data, and representations, our accuracy is 

comparable to Hearst’s.  

Our results are also similar to those reported by other systems. GAMBL, which employs example-based 

learning and a genetic algorithm for selecting which features to use, achieves an accuracy of 74% on 

binary course-grained word senses (Decadt et al., 2004). The IMS system (Zhang & Ng, 2010), which uses 

support vector machines and cross-linguistic parallel corpora, achieved a 73% accuracy rating on a 

lexical sample test corpus. The best-performing systems on Semeval-2007, which featured a lexical 

sample task,
3
 achieved an f-score of about 89% (Pradhan et al., 2007). There are several differences 

between that task and ours. One hundred words were tested, the number of training examples ranged 

from 32 to 1009 (mean 223), and the number of senses present ranged from one to 13 (one to eight 

                                                           
2
 This leaves out “bass”, which hit 100% after only 25 examples, and thus was an outlier. 

3
 http://nlp.cs.swarthmore.edu/semeval/tasks/task17/description.shtml 

Table 3: Accuracy for binary disambiguation of star, mean of five-fold cross-validation.  Results 

significant vs. chance; p < .05. n = 113 in all conditions. No significant difference between 

generalization and retrieval. 

Sense Generalization: Threshold 

0.2 

Generalization: 

Threshold 0.4 

Retrieval Only 

FamousHuman 60% 75% 71% 

Star 95% 85% 85% 

Total  79% 81% 79% 
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when senses with fewer than three instances are excluded). The corpus is not sense-balanced, with the 

most-frequent-sense baseline achieving 78% accuracy.  

There are word sense disambiguation methods that provide higher accuracy, but at the cost of vastly 

more training data.  For example, Yarowsky (1995) achieves 94 to 98% accuracy on similar tasks using a 

semi-supervised method. However, that method used an (unlabeled) corpus of 400 to 11,000 examples 

per word, whereas ours requires relatively little labeled training data and does not require a large 

corpus to operate. 

Acquisition rate is also an important concern for learning by reading, as word sense disambiguation is 

just one component of a larger system.  Consequently, we also measured how few examples sufficed to 

achieve reasonable levels of performance.  Keeping the assimilation threshold at 0.4, when we varied 

the number of training examples from 20 to 80, the accuracy ranged from 73% to 81%, a difference that 

is not statistically significant (n = 113).  In other words, by twenty examples the system is already 

performing reasonably well. 

3.8.2 Comparing Generalization Strategies 

We noted earlier the lack of significant difference between the accuracy for the retrieval-only and 

generalization conditions.  One possible explanation for this is that cases are not being generalized, or 

that only ungeneralized examples are being used in retrieval. To test this, we examined how the method 

works under each condition in more detail.  Table 4 illustrates, for one randomly-chosen fold, the 

number of generalizations and examples produced, where Gen Size indicates the number of examples 

assimilated to produce a generalization.  As expected, a lower assimilation threshold leads to more and 

larger generalizations.  In the 0.4 condition, generalizations provided evidence 23% of the time, and in 

the 0.2 condition, generalizations provided evidence 21% of the time. This difference is not statistically 
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significant.   As the system accumulates yet more experience, some of what are now cases would 

become generalizations, as sufficiently similar sentences are encountered.  Thus we believe that the full 

benefit of generalization may only be apparent when used in the intended context of learning by 

reading, where a system will be reading very large amounts of text.  We expect that generalizations will 

be used most of the time as a system becomes more experienced, and the information compression 

they provide will help keep memory loads reasonable.  

 

3.8.3 Experiment 2: Progressive Learning Task 

Experiment 1 served to examine accuracy in the kind of test traditionally used in word sense 

disambiguation research.  In this subsection we introduce a new kind of test, involving connected text, 

that is designed to be a more natural evaluation for word sense disambiguation in the context of 

learning by reading.  Recall that our hypotheses are that (1) analogical word sense disambiguation will 

have reasonably high accuracy, compared to other systems, while reading connected text about a topic 

and that (2) its rate of learning will be rapid.  Experiment 2 provides evidence for both hypotheses.   

We divided Chapter 2 of a popular science book (Buckley, 1979) into contiguous sections, each ten 

sentences long. There were a total of 90 sentences after simplification, leading to nine subsections. For 

each section, the disambiguation procedure was run using the generalization contexts generated from 

gold standards of the previous sections as the source of cases for disambiguation.  (This means that for 

Table 4: Generalizations created on first fold of Experiment 1. 

Trial Examples Ungenl’d 

Examples 

Gens Created 

(Star) 

Gens Created 

(FamousHuman) 

Min Gen 

Size 

Max Gen 

Size 

Generalization: 

Threshold 0.2 

92 34 16 12 2 3 

Generalization: 

Threshold 0.4 

92 44 14 10 2 2 

Retrieval Only 92 92 0 0 N/A N/A 
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the first section there will be no correct answers.)  We note that this is an idealization: mistakes in 

understanding commonly occur when people read, and they will be even more likely in reading systems 

that have a much weaker grasp on the world. After recording accuracy, cases for that section were 

automatically generated, based on manually selected word sense choices, to extend the generalization 

contexts accordingly.   

There are several things worth noting about this experimental setup. First, the system gets many choices 

correct simply because they are monosemous within the text, so the only sense that has been seen 

before is the correct one. The reminding will produce the correct sense regardless of which 

generalization or example it retrieves. For example, the word “pan”, within the text used in this 

experiment, always refers to a cooking pan. We refer to such choice sets as easy, because any system 

with access to the set of training data could get them correct by simply choosing the only attested 

sense. Note that a singleton choice set is not automatically easy, as the correct thing to do may be to 

select no choice; a singleton choice set for a word that has never been seen before will not have a 

selection made, as the system is not allowed to guess. 

There are also situations where a previously seen word is now being used in a novel sense, and hence 

there are no cases with the correct sense.  We refer to such choice sets as impossible.  Choice sets for 

words that have never been seen before are impossible, even if it is a singleton choice set. 

The most interesting situations are where multiple senses have previously been encountered and one of 

them is actually correct. We refer to these as interesting choice sets. Every choice set is either easy, 

impossible, or interesting.  We focus on the interesting choice sets in measuring the accuracy of 

analogical disambiguation, but we tabulate the others because they help provide upper and lower 

bounds on how much can be obtained by any learning system that accumulates information while 
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reading.

 

Generally, most words are used with only one word sense within a given document (Daelemans, Van 

Den Bosch, & Zavrel, 1999).  There are 131 interesting choice sets in our experiment, out of 528 total 

(24.8%).  This is higher than might be expected, but they represent only 18 distinct words.  Most of the 

130 words that generate choice sets are monosemous within the text. The 18 words that generate at 

least one interesting choice set are those which are fairly common in the text, including “of”, “can” and 

“temperature”. Only 52 out of 131 interesting choice sets are choices between word senses alone: the 

79 others involve the same word sense but differ in semantic frames, i.e., in role relations that 

interconnect constituents. Thus this problem is substantially different than what is normally addressed 

in research on word sense disambiguation. 

Table 5 summarizes the results.  For each section, Total is the total number of choice sets generated by 

the NLU system. In general there are fewer choice sets than there are words, as there are some words 

(e.g., “an”, “the”) for which the language system does not generate choice sets. Total Accuracy is the 

number that the procedure got correct. Impossible, Easy, and Interesting indicate how many such choice 

Table 5: Results from Experiment 2– Progressive performance on sections of a text, with generalization at an 

assimilation threshold of 0.4. 

Section Total  Total 

Accuracy 

Impossible  Easy Interesting  Interesting 

Accuracy 

1 40 0% 40 (100%) 0 (0%) 0 (0%) N/A 

2 61 30% 43 (70%) 18 (30%) 0 (0%) N/A 

3 51 39% 28 (55%) 18 (35%) 5 (10%) 80% 

4 66 59% 22 (33%) 25 (38%) 19 (29%) 95% 

5 68 32% 41 (60%) 17 (25%) 10 (13%) 60% 

6 57 35% 31 (54%) 10 (18%) 16 (28%) 63% 

7 62 61% 20 (32%) 11 (18%) 31(50%) 87% 

8 69 49% 23 (33%) 27 (39%) 19 (28%) 37% 

9 54 48% 17 (31%) 6 (11%) 31(57%) 65% 
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sets that section contained. The first section had no prior examples, and the second section had no 

interesting choice sets, so Interesting is zero in both sections. The last column gives the system’s 

accuracy on interesting choice sets. For them, the mean number of senses previously seen is 3.13.  The 

total accuracy on interesting choice sets is 70.2 percent. Note that this number cannot be directly 

compared to accuracy numbers from most other disambiguation experiments (including from our 

Experiment 1), as it covers only disambiguation cases where multiple senses of the word have previously 

been seen, which is not what experiments typically measure.  However, it is still encouraging that it is 

comparable in accuracy to other disambiguation techniques applied to what we view as simpler 

disambiguation problems.  

The total accuracy on all choice sets is 41.1 percent. Note that this includes section 1, where all choice 

sets were impossible. The total accuracy on words seen before (easy, interesting, and impossible choice 

sets that previously appeared in the text with a different sense) is 71.3 percent. Again, owing the nature 

of the task, we cannot directly compare these numbers to most results on traditional word sense 

disambiguation, but it does suggest that analogical disambiguation can be useful for learning by reading. 

Table 5 also highlights how local properties of the text can affect the performance. Sudden shifts in 

sense use can cause temporary accuracy drops.  For example, there is a topic shift at section 5 that is 

responsible not only for a drop in the accuracy over interesting choice sets, but also for the rise in the 

number of impossible choice sets.  Note also that there is not a monotonic upward trend in accuracy on 

interesting words from section to section.  This might seem surprising, but new words continue to be 

introduced throughout the text, and words that are not introduced until later have no precedents.  

To examine learning rate on interesting choice sets, Figure 6 tabulates accuracy versus the number of 

available prior cases.  Importantly, accuracy is in the range of 65% even with only a handful of examples.  
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This suggests that analogical word sense disambiguation can provide useful evidence, even in the early 

stages of becoming familiar with how words are used. The accuracy rises from 65% in the conditions 

with four or fewer previously seen instances to 76% in cases with 13 or more, although this increase is 

not statistically significant. 

 

3.9 Discussion  

We have described a new approach to word sense disambiguation that uses human-like models of 

analogical processing operating over relational representations that combine linguistic and conceptual 

information produced in the course of natural language understanding.  The system operates either with 

analogical retrieval alone or with analogical retrieval and generalization.  It provides comparable 

accuracy to traditional word sense disambiguation algorithms that rely on feature-based 

representations, while requiring relatively little training data. It achieves 72% accuracy with just 20 

training sentences. While that is not quite as accurate as a supervised system on a binary 

 

Figure 6: Accuracy on interesting choice sets for experiment 2, broken down by number of 

previously seen examples, with n ≥ 26 for all groups. All results are significantly above 

chance, but there is no significant difference between categories. In 13+ category, the 

maximum number of previously seen examples is 25, whereas the mean is 16.9. 

0

0.2

0.4

0.6

0.8

1

1-4 5-8 9-12 13+

A
cc

u
ra

cy

Number of Previously Seen Instances



71 

 

 

 

disambiguation task, it is comparably strong for the quantity of training data. This is important for 

learning by reading systems, which attempt to learn without the benefit of a large annotated corpus. 

We also described an experiment that tested the system’s performance in a situation more like those 

that are faced by learning by reading systems. Our unconventional experimental setup was intended to 

measure the ability to disambiguate semantics with just an understanding of the previous sections of 

the text. Our system’s performance on words with just a few previously-seen examples was surprisingly 

high, up to 70% even after only a few examples of a word. This is promising, as it suggests that the 

technique could be valuable for learning by reading. 

Finally, we note that in applying analogical processing to word sense disambiguation, we did not need to 

modify the SME, MAC/FAC, or SAGE systems.  This provides additional evidence as to the generality of 

analogical processing, and highlights its potential for use in other cognitive systems and other settings. 
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4 Connection-Based Case Construction 

4.1 Goals and Motivations 

Part of what makes reading powerful is that it allows a system to acquire large amounts of closely 

related and well-connected knowledge. One major challenge that comes with learning by reading is the 

task of organizing that knowledge.  For example, one 80-sentence chapter of Sun Up to Sun Down 

(Buckley, 1979) allowed the system to generate 733 statements directly from the text. An 88-sentence 

web article comparing and contrasting dolphins and porpoises (Dolphin vs. Porpoise, 2015) allowed the 

system to generate 751 statements. The set of statements from each source are all loosely interrelated, 

as they all come from a single source, but some facts are much more closely related than others. This 

chapter addresses the task of organizing the facts into coherent cases. 

Structure mapping, the model of analogy we use in this work (Section 2.4.1), operates over structured 

representations. One thing that makes analogy so useful is that these structured representations are a 

natural way to describe a wide variety of things, especially complex systems or processes. Creating 

structured representations, however, is not easy. We would like a system to be able to organize the 

things it learns by reading into cases that are useful for structure mapping and other forms of reasoning.  

An LbR system attempting to accumulate knowledge over time benefits from being able to integrate 

that knowledge with its existing knowledge (see Section 2.1.2). There are several things a case 

construction algorithm can do to aid with knowledge integration.  Analogical generalization (see Section 

2.4.4) can be used to build up generalizations of situations, but only if the information is represented as 

structured cases.  The system represents the cases using the same ontology as its existing knowledge 

base. This has several advantages for knowledge integration. First, it allows cases to be more easily 
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integrated into the knowledge base, as the terms being used are the same. Second, it allows the existing 

knowledge to guide how new information is integrated. 

Case construction is the task of building a case, often by selecting a set of facts from a larger set. The 

case construction algorithms I describe here all take a discourse interpretation (Section 2.2.1) as input. 

They select subsets of that interpretation that are useful for reasoning. For example, in a textbook 

chapter about solar energy there might be a description of a solar heating system. The system selects a 

subset of the facts in the discourse interpretation that form a useful description of a concept of interest, 

such as the solar heating system. This allows the system to make useful comparisons. For example, it can 

compare the solar heating system to a rainwater collection system. It can also compare the state of the 

solar heating system at different times during the day.  

Throughout, I use case comparison as the primary use example. Case comparison is the task of finding 

similarities and differences between cases. It has been used or proposed for use in a variety of reasoning 

applications (Brüninghaus & Ashley, 2001; Peterson, Mahesh, & Goel, 1994; Chaudhri et al., 2014).   

The case construction strategies I describe here exploit connections between fact statements in 

interpretations generated while reading. Some connections are based on the parts of the source used to 

produce the facts. For example, two facts might be connected if they were derived from the same 

sentence. Other connections are derived from the facts themselves. For example, two facts might be 

connected if they mention the same entity.  

This chapter presents four methods for building cases from discourse interpretations and compares 

their performance. Two make use of only natural divisions in the text, such as paragraph breaks. Two 

also take advantage of connectivity properties of the entities mentioned in the text. All are constructed 

using a seed entity as a starting point. For example, the term “solar heating system” in the sentence “At 
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the start of each day, the solar heating system is semifull” was one seed that the system used. This seed 

was drawn from a simplified chapter of Sun Up to Sun Down used in the corpus. It will be used as an 

example throughout this chapter. I begin with a brief summary of the four methods used, and then 

move on to what motivates them. I then describe how they are constructed. I close with an evaluation 

of the methods based on their performance on a practical task, and discuss this performance, including 

an analysis of the types of error produced by each method. The work detailed in this chapter was first 

described in Barbella and Forbus (2015). 

4.2 Overview of Case Construction Methods 

In this chapter I describe four methods for building cases from collections of facts derived through 

reading. The first method, Local Sentence Interpretation (LSI; Section 4.5.1), simply uses all of the facts 

derived from the sentence where the seed appears. The second, Local Paragraph interpretation (LPI; 

Section 4.5.2) uses all of the facts from the paragraph where the seed appears. The third, Sentence-

Based Segmentation (SBS; Section 4.5.3), uses all of the facts from all of the sentences where the seed 

appears. The fourth, Fact-Based Segmentation (FBS; Section 4.5.4), adds facts in iterative waves. At each 

step, it adds facts that share entities with facts already in the case. Before discussing the 

implementation of the methods, I discuss what motivates and constrains them. 

4.3 Desired Features for Cases 

4.3.1 Coherence 

One of the most basic goals for a system that builds cases using information learned while reading is 

that those cases should be coherent – that is, they should be a collection of information that is usefully 

related, rather than an unrelated collection of facts. This goal is so basic that it can almost go unstated. 



75 

 

 

 

There may be some use for a truly arbitrary group of facts that happen to all have been pulled from the 

same source, but such uses are not common in reasoning.   

There is no simple way to measure coherence. While some automatic measures exist, such as graph 

connectivity measures, those do not necessarily capture utility in any meaningful way. One common 

strategy is to use performance on external measures as the measure of quality, as in Wei and Croft 

(2006). They use the topics for retrieval, and we follow suit by choosing an external measure to evaluate 

the quality of the cases the system produces. Our task is one for which this is especially appropriate. 

First, the end goal for the algorithms presented here is for use in reasoning tasks, so it makes sense to 

measure those uses directly. Second, the case construction algorithms produce sets of related facts, 

rather than clusters of words, as some similar work does. This makes measures based on things like the 

relatedness of the Wikipedia articles for the contents of the cases less useful. 

In the case of our example seed, a coherent case likely contains other facts about the solar heating 

system operating at the beginning of the day, and as few facts as possible that are not related to that. 

4.3.2 Interpretation-Consistency 

A second desirable feature for case construction methods that build from discourse interpretations is 

that they should not introduce new errors. That is, if the source interpretation is true, the constructed 

case should also be true. This is not a trivial constraint. Not every statement in a discourse interpretation 

is true when removed from that discourse interpretation. This means arbitrary statements from a 

discourse interpretation cannot just be added to a case without potentially producing an untrue case. I 

will refer to cases that are true, given that the discourse interpretation is true, as interpretation-

consistent. 



76 

 

 

 

One way such errors can be introduced under our representation scheme involves causation and 

constituent DRS cases. Suppose two constituent DRSs are involved in a causation relationship that looks 

like this: 

 (causes-SitSit DRS-01 DRS-02) 

causes-SitSit is a causation predicate that connects two situations. It indicates that the situation 

described by the facts in DRS-01 causes the situation described by the facts in DRS-02. However, if in 

the process of creating the case, the system includes that causation statement but fails to include some 

of the facts in DRS-01, the statement might not be true. This means that extra care needs to be taken 

when including facts that mention constituent DRSs or facts that are themselves within a constituent 

DRS. 

For example, consider the sentence “Angry dogs attack people.” The interpretation is as follows: 

In Discourse-2172: 

a) (implies-DRS-DRS DRS-18 DRS-19) 

In DRS-18: 

b) (isa dog3348 Dog) 

c) (feelsEmotion dog3348 (MediumToVeryHighAmountFn Anger)) 

d) (isa people3409 Person) 

In DRS-19: 

e) (performedBy attack3358 dog3348) 

f) (isa attack3358 AttackOnObject) 
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g) (intendedAttackTargets attack3358 people3409) 

This interpretation means “if a dog is angry, and there is a person, that dog will attack that person.” 

Notice that if fact c is somehow omitted from the case, however, then the meaning becomes “if there is 

a dog and a person, the dog will attack that person.” That is not a conclusion that follows from the 

discourse interpretation. It is not always the case that failure to include a fact from a constituent DRS 

results in interpretation-inconsistency. For example, fact g could be omitted, and what remains is still 

consistent with the discourse interpretation. However, reasoning about which facts within a DRS can be 

removed without changing the meaning is outside the scope of a case construction algorithm. In the 

algorithms described in this thesis, any time part of a DRS is included in a case, the entire DRS is 

included. 

I introduce the term interpretation-consistent, rather than just using true, because there are many 

reasons other than case construction that the case might be untrue. One major reason is that the 

interpretation might have errors introduced during parsing or semantic interpretation. Dealing with 

errors introduced in this way is outside the scope of the case construction methods described here, 

although this is part of the broader task of knowledge integration. Additionally, the source text might be 

erroneous, out of date or intentionally misleading. It might be fictional, or be describing a hypothetical 

without identifying individual statements as hypothetical. Reasoning about the nature of the source text 

in those terms is similarly outside the scope of the case construction processes. My method for keeping 

constructed cases interpretation-consistent involves treating certain discourse representation structures 

as atomic.   
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4.3.3 Amenability to Analogy 

Another desirable feature for constructed cases is that they are amenable to analogical processing, 

including comparison and retrieval.  As described in Section 2.4, analogy undergirds many cognitive 

processes in humans, and has been used for a variety of computational tasks. Given this, a case 

construction strategy that builds cases that allow analogy to maximize its potential is preferable to ones 

that do not. As noted above, the model of analogy used for the work described here is structure 

mapping theory (Gentner, 1983; see Section 2.4.1). This model of analogy – and, most relevant for our 

purposes, SME (Section 2.4.2) – prioritizes structural matches, and is able to draw more (and more 

interesting) inferences from representations that are more hierarchical and better-connected. Producing 

cases that are amenable to analogical reasoning allows for more effective analogical comparison and 

retrieval. This can be supported by using case construction strategies and representation schemes that 

favor facts that mention the same entities and higher-level facts that connect multiple other facts 

together. The Fact-based Segmentation construction method introduced in Section 4.5.4 is designed to 

attempt to capture these sorts of relationships. With our example seed, a good case would be one that 

allows for comparisons to the operation of a rainwater collection system, as the source text suggests. 

One special scenario for building structured cases from discourse interpretations is when the text uses 

an explicit analogy. We describe a method for extracting analogy bases and targets from text, along with 

relationships between their entities, in Chapter 5. A case construction method that produces cases 

amenable to analogy can serve as a starting place for this functionality.  
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4.3.4 Size Tradeoffs 

Different case construction strategies result in cases of different average sizes. Adding a larger number 

of facts to a case increases the odds that the algorithm will capture everything important, but it comes 

at the cost of including more facts that may not be relevant. 

There are clear costs associated with not including enough facts. A case that is missing important facts is 

an incomplete description of a situation, which impacts a system’s ability to reason about that situation. 

Moreover, critical missing facts can reduce the value of analogical comparison. For example, consider a 

case built around our example seed, the term “solar heating system” in the sentence “At the beginning 

of the day, the solar heating system is semifull.” Suppose that case is compared to a case built around a 

seed representing the solar heating system later in the day. There is a difference in how much heat the 

system contains at different points in time. This difference is an important one. To detect that as a 

difference, the cases need to actually contain information about how much heat the system contains. If 

they do not, that difference cannot be detected. A case construction method that added facts too 

conservatively might miss the facts that represent the amount of heat the system contains. If this 

happens, the comparison system would not report that difference. 

Including some extra facts is not fatal. SME is capable pulling out matching structured representations 

from pairs of cases even if there is a considerable quantity of extra facts (Ferguson, 1994). Nevertheless, 

if a case contains more irrelevant facts, is is more likely it is that noise will compromise an analogical 

comparison. Additionally, a case with a large number of facts is more difficult for a human working with 

the system to quickly understand. Depending on the use case, this last drawback might be a major 

design constraint or it might be largely irrelevant. 
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In our error analysis for Experiment 3, we evaluate the tradeoffs between including more facts and 

including fewer. 

4.4 Approach 

The case construction algorithms described here work by exploiting naturally-occurring boundaries in 

text, such as sentence and paragraph breaks. Two also exploit the connectivity properties of knowledge 

learned by reading. The most important resource available is the discourse interpretation itself. For a 

particular entity, facts that mention that entity are likely to be relevant to a description of that entity 

than facts that do not mention that entity. Similarly, two entities that are mentioned in the same fact 

are probably related to each other.  For example, cat15 and eat27 in (doneBy eat27 cat15), 

which indicates that the eat27 was performed by the cat15, are likely related, as that fact mentions 

both of them.  If we are looking for information about the eating event eat27, knowing that it was 

done by cat15 is likely to be relevant. The dynamic case construction algorithm described in Mostek, 

Forbus, and Meverden (2000) takes advantage of this. It begins with a seed entity. It then adds to the 

case any facts that mention that entity, subject to filtering based on predicates or other factors. It 

proceeds by then adding any facts that mention entities mentioned in those facts, and so on. That 

strategy forms the foundation for the Fact-based Segmentation approach, described below.  

The discourse interpretations produced by EA NLU use DRT (Section 2.2.2). This means that the facts are 

contextualized. Some are directly in the discourse interpretation case. Others are in constituent DRS 

cases. Facts can also be asserted in multiple contexts. For example, a fact might be in both the discourse 

interpretation one of its constituent DRSs. When this occurs, the system treats the instances as separate 

facts, becasue each being true means something different semantically. Having conditional facts 

necessitates taking steps to ensure interpretation-consistency (Section 4.3.2). 
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The methods can get the sentence and paragraph boundaries from the source text itself. These directly 

or indirectly guide for all four case construction algorithms described in this chapter. In general, a single 

sentence is generally about a single topic, and if one fact derived from a sentence is relevant, it is likely 

that other facts derived from that sentence are relevant as well. Paragraphs are similar, although the 

effect is weaker.  

4.5 Case Construction Algorithms 

Described here are two baseline methods and two connection-based methods. I will continue to use our 

example seed, the term “solar heating system” in the sentence “At the start of each day, the solar 

heating system is semifull.” 

4.5.1 Local Sentence Interpretation 

The first algorithm is local sentence interpretation (LSI). This method takes the sentence where the seed 

occurs and uses its sentence interpretation – including its constituent DRSs – as the case. This makes 

intuitive sense as a baseline. Most English-language sentences are generally about a single thing. 

Therefore, it is likely that a sentence case contains mostly things that are directly relevant to reasoning 

about the things it mentions. For our example sentence, the information learned from the sentence 

interpretation is that there is a solar heating system, and at the start of a day it is partially full. This 

method is inexpensive, as no additional computation is required beyond what goes into understanding 

the sentence in the first place. A limitation of this method is that important information about an entity 

is often spread over multiple sentences.  For our example seed, all of the facts derived from the 

sentence “At the start of each day, the solar heating system is semifull” are be added to the case, and 

only those facts are added to the case.  This is six facts in total.  
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4.5.2 Local Paragraph Interpretation 

The second baseline algorithm, local paragraph interpretation (LPI), is similar, but it uses all of the facts 

derived from all of the sentences in the paragraph of the source text that the seed appears in. It uses 

facts from the discourse interpretation case, rather than the individual sentence cases, so that it can 

take advantage of coreference resolution, but otherwise operates like local sentence interpretation. The 

local paragraph interpretation method is much less likely to miss important information about the seed, 

but it has two potential disadvantages. First, a paragraph can cover multiple topics, which increases the 

amount of noise in the case. Second, it is may be less useful for comparing or contrasting two seeds that 

are in the same paragraph, because the cases will be identical. We investigate this potential drawback 

specifically in Experiment 3, below. Because the system enforces alignment between the seeds, there 

can still be some candidate inferences drawn, but structural alignment will result in many statements 

matching with themselves. For our example seed, the case created by this algorithm is very large and 

covers a broader range of topics, as it contains the facts built from all 15 sentences in the paragraph. 

This is 178 facts in total. 

4.5.3 Sentence-Based Segmentation 

Sentence-based segmentation (SBS) is described in Figure 7 . It creates a case by adding all of the facts 

derived from sentences where the seed is mentioned.  This makes intuitive sense. These facts are likely 

to be related to the topic in question, since they come from the same sentences. One major advantage 

of this strategy is that it includes facts from the discourse interpretation that are otherwise 

disconnected from the rest of the graph, but does not simply include everything. Because SBS adds 

entire sentences at once, including their constituent DRSs, interpretation-inconsistency is avoided.  
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The system pulls facts from the discourse interpretation rather than just using the union of the sentence 

interpretations. This is done because the discourse interpretation unifies coreferent entities into a single 

discourse variable. For example, if coreference determines that two mentions of “the solar heating 

system” refer to the same thing, they need to have the same symbol in any case that describes the 

situation. When the discourse interpretation is constructed from the sentence interpretations, 

coreferent entities are all replaced by the same symbol, providing a more integrated description. For our 

example seed, the case includes information from all three sentences in the discourse that mention the 

solar heating system – 28 facts in total. Those facts are shown in Table 15, in Appendix B. 

Figure 7. A pseudocode representation of how Sentence-based Segmentation works. 

Procedure SBS. 

Inputs: s, a seed entity.  

Outputs: c, a set of facts for a case 

  Let c = {} 

  Let s.coref = {entities coreferent with s}⋃{s} 

    For each entity e in s.coref: 

      Let t be the sentence that e appears in. 

      For each fact f that was derived from t: 

        Let c = adjoin(c, f)  

      For each constituent DRS k derived from t: 

        For each fact f in k: 

          Let c = adjoin (c, f)  

  Return c. 
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The method is reliant on effective coreference (Section 2.2.3). That is the system’s primary way of 

recognizing that the same entity is being used in multiple sentences
4
. Additionally, topics that are 

mentioned once and then elaborated on without further direct reference to the topic itself can result in 

very limited cases. For example, consider the sentences, “The dolphin often has one calf. The calf is 

weaned after one year.” If “dolphin” in the first sentence is the seed, the second sentence will not be 

included, as it does not mention the dolphin, even though it is likely relevant. On the positive side, the 

method’s relative conservatism in including facts means that information that is included in the case is 

likely to generally be relevant to the topic. 

4.5.4 Fact-Based Segmentation 

The second connection-based case construction method I developed is fact-based segmentation (FBS). It 

operates as described in Figure 8. This method is inspired by the method described in Mostek, Forbus 

and Meverden (2000). However, it has been adapted to use the interpretations produced by the 

language system. The big-picture idea behind FBS is that facts from the discourse interpretation are 

                                                           
4
 The system also recognizes when a properly named entity, such as “Canada” or “Bill Gates,” is mentioned 
multiple times, and assumes that those refer to the same thing. 

Table 6. A subset of the facts that were added to the case using the fact-based segmentation method. The method added 

63 facts in total, across 6 DRSs. Representations simplified for space and readability. 

In Discourse-DRS-01: 

(isa solar-heating-system01 SolarHeatingSystem) 

(fullnessOfContainer solar-heating-system01 PartiallyFull)  

(isa flow16 FluidFlow-Translation) 

(isa prevent15 (PreventingFn flow16)) 

(primaryObjectMoving flow16 water17) 

(not DRS-08)  

In DRS-08: 

(isa rise13 AscendingEvent)  

(isa solar-heating-system01 SolarHeatingSystem)  

(objectMoving rise13 sun14)  

(on-UnderspecifiedSurface sun14 solar-heating-system01) 
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added to the case if they share an entity, collection, or DRS with a fact already in the case. This process 

happens iteratively until a maximum depth is reached.  

Like the other methods, fact-based segmentation starts with a seed entity. This entity is passed to the 

gatherFactsForEntity procedure. Facts are added to the case at the same depth if they are isa 

facts that mention that entity. They are added to the case at the next depth down if they are either isa 

facts that do not mention the entity, but use the same collection as one of the entity’s isa facts or non-

isa facts that mention that entity. If any of these facts mention a constituent DRS or are contained in 

one, the facts in that DRS are added at the same depth. This is done by the procedure getDRSFacts. 

From there, the system goes through each entity that is mentioned in a fact that added to the case that 

round. Each of these is extended from, using gatherFactsFromEntity, just as the seed was 

extended from. Entities at the maximum depth are not extended. Entities that have already been 

extended from are not extended, which prevents loops.  
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Figure 8: A pseudocode representation of how Fact-based Segmentation works. 

Procedure FBS. 

Inputs: s, a seed entity; depthMax, a maximum depth. 

Outputs: c, a set of facts for a case 

 Let eExtended = {s} ;; The entities that have already been used. 

 Let c = gatherFactsForEntity(s, 0, depthMax)  

 Return c. 

 

Procedure gatherFactsForEntity. 

Inputs: eCur, the current extension entity; depthCur, the current depth; 

depthMax, a maximum depth.  

Outputs: cExtend, a set of facts. 

 Let cExtSameDepth = {} ;; The facts added at the same depth 

 Let cExtNextDepth = {} ;; The facts added at the next depth 

 Let cExtend = {} 

 For each fi in {isa facts that mention eCur}: 

  Let cExtSameDepth = adjoin(cExtSameDepth, fi) 

  For each ji in {isa facts in fi’s paragraph that use the same  

                      collection as fi}: 

   Let cExtNextDepth = adjoin(cExtNextDepth, ji) ;; Add at the next depth. 

 For each fn in {non-isa facts that mention eCur}: 

  Let cExtNextDepth = adjoin(cExtNextDepth, fn) ;; Add at the next depth. 

 Let cExtSameDepth = cExtSameDepth⋃getDRSFacts(cExtSameDepth) 

 Let cExtNextDepth = cExtNextDepth⋃getDRSFacts(cExtNextDepth) 

 Let cExtend = cExtNextDepth⋃cExtSameDepth 

 For each fc in cExtSameDepth: 

  For each eNext in {entities mentioned in fc}: 

   Unless member(eNext, eExtended): 

    Let eExtended = adjoin(eExtended, eNext)  

    Let cExtend = cExtend⋃gatherFactsForEntity(eNext, depthCur, depthMax) 

 Unless depthCur = depthMax: 

  For each fc in cExtNextDepth: 

   For each eNext in {entities mentioned in fc}: 

    Unless member(eNext, eExtended):  

     Let eExtended = adjoin(eExtended, eNext) 

     Let cExtend = cExtend⋃gatherFactsForEntity(eNext, depthCur + 1,         

                                                depthMax) 

 Return cExtend. 

  

Procedure getDRSFacts.  

Inputs: extendCase, a set of facts. 

Outputs: DRSFacts, a set of facts. 

 Let DRSFacts = {} 

  For each fc in extendCase: 

   If fc is contained within a constituent DRS cDrs: 

    For each fccDrs in {facts in cDrs}: 

     Let DRSFacts = adjoin(DRSFacts, fccDrs) 

    For each fmcDrs in {facts that mention cDrs}: 

     Let DRSFacts = adjoin(DRSFacts, fmcDrs) 

 Return DRSFacts. 
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Working through an example of the fact-based segmentation method in action can be useful.  Recall our 

example seed, the term “solar heating system” in the sentence “At the start of each day, the solar 

heating system is semifull.” The method begins by selecting the discourse variable derived from that 

seed, solar-heating-system01. When an entity is mentioned in the case, facts that mention that 

entity are added to the case. This means that the facts (fullnessOfContainer solar-

heating-system01 PartiallyFull) and (isa solar-heating-system01 

SolarHeatingSystem) are added to the case, in the contexts they appear in. The first appears in 

the top-level DRS, Discourse-DRS-01. The second appears in several constituent DRSs, including 

DRS-08. When an isa fact collection is added the case, other isa facts in the paragraph that use the 

same collection are added to the case. For example, if there were other instances of 

SolarHeatingSystem in the paragraph, such as (isa solar-heating-system-35 

SolarHeatingSystem), the facts indicating this would be added. This lets the system include 

multiple instances of the same type of thing in the case and produce better cases by providing a 

mechanism for quickly reaching related facts. When a constituent DRS is mentioned in a fact in the case, 

facts that mention that constituent DRS and facts inside that constituent DRS are added to the case. 

Here, when DRS-08 is added to the case, (not DRS-08) is added to the case. When a fact contained 

in a constituent DRS is in the case, the rest of that constituent DRS is added to the case. Because the 

case contains a fact in DRS-08, this rule adds the other facts in DRS-08. A fact present in multiple 

DRSs may appear in the final case more than once, contextualized in different DRSs. Some of the facts 

that were added to the case for our example seed are displayed in Table 6; a full list is available in the 

appendix, in Appendix D. 

All of the facts in a given constituent DRS are added to the case at the same depth. Adding a complete 

constituent DRS is crucial for interpretation-consistency.  For example, consider the sentence “When the 
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temperature of the heat storage equals the temperature of the solar panel, the heat does not flow.” 

Leaving out any part of the DRS constituent structure, such as the antecedent information or the 

negation, would change the meaning of the sentence. 

I chose a maximum depth of three, based on examination of pilot data. For our example seed, the 

resulting case had 63 facts.  With a depth of two, the case produced had only 60 facts, and for a depth of 

four, it produced had 115 facts.  Table 6 shows some of the facts that were added to the case for our 

example seed. 

 

Error! Reference source not found. shows the number of facts in the case produced by each of the four 

methods, working over the example seed. Table 7 summarizes the theoretical strengths and weaknesses 

of the methods. 

 

 

 

Figure 9. The number of facts in a case constructed around the example seed for each of the four case construction 

methods. 
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4.6 Evaluation 

Given the different potential strengths and weaknesses of the four methods, I designed an experiment 

to evaluate them. The hypothesis tested with our experiment is that the connection-based construction 

methods, fact-based segmentation and sentence-based segmentation, will produce more effective 

cases, as measured by their performance on a compare and contrast task, and produce more compact 

cases as well. Local sentence interpretation and local paragraph interpretation are the baseline 

methods.  

Direct evaluation of case construction is difficult. This is because there is no gold standard for what 

constitutes a correct case. Not only is it task-dependent, but there may be variation in human judgment 

regarding what the best case configuration is, even for a specific task. My evaluation metric uses 

measures that are less direct, but more objective. They are focused on the sorts of tasks that such a 

system will actually be used for. 

Table 7 Potential strengths and weaknesses of each of the four case construction methods. 

Method Avoids 

Noise 

Captures 

Relevant 

Statements 

Other 

LSI Excellent Poor Misses any information not in the single 

sentence 

LPI Poor Excellent Produces identical cases for seeds in the 

same paragraph 

Produces very large cases 

SBS Excellent Average Can miss relevant information even from 

nearby sentences 

FBS Average Excellent Most compute time-intensive to produce 
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I use a compare and contrast task for evaluation because it is one of the most straightforward kinds of 

analogical reasoning, and it has interesting potential applications (Brüninghaus & Ashley, 2001; 

Peterson, Mahesh & Goel, 1994; Chaudhri et al., 2014). Given two entities in the text, the system 

compares and contrasts cases generated using those entities as seeds.  For the study, I created two 

corpora from pre-existing source texts, described next. 

Structural alignment is useful for identifying alignable differences (Gentner & Gunn, 2001). These are 

differences between cases that are conceptually related to their commonalities. Cases that describe the 

same system in different conditions or at different points of operation naturally have a lot of 

commonalities, so finding places where they differ is a natural task for structure mapping.   

This task is a useful evaluation for several reasons.  First, it is realistic, providing a more objective basis 

for evaluation. Second, it rewards case construction methods for including useful facts. It also rewards 

methods that do not include large amounts of irrelevant information. As the results below demonstrate, 

however, including more information generally led to improved performance. While there is no 

perfectly objective gold standard for what constitutes the correct conclusions to draw about similarities 

and differences between cases, the task is more specific and has more objective desired results than a 

simple “produce a good case” task. The differences and similarities between the solar heating system at 

the start of the day and the solar heating system at the end of the day are relatively well-defined. The 

same is true for the similarities and differences between the solar heating system at the start of the day 

and a rainwater collection system to which it is compared. This means that the evaluation criteria are 

less arbitrary. 
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4.6.1 Corpora 

The first source text was chapter 16 of Sun Up to Sun Down (SUSD16; Buckley, 1979), a book about solar 

energy and solar heating that makes extensive use of analogies.  I selected chapter 16 because it 

contains descriptions of multiple complex systems. This includes an extended analogy explaining a solar 

heating system in terms of a rainwater collection system.  The simplified version of the chapter consists 

of 80 sentences in 11 paragraphs. A paragraph from the simplified version appears in Table 1.  The 

interpretation process produced 733 fact statements across 54 DRSs. The second source text was a 

Diffen article that discusses dolphins and porpoises (Dolphin vs. Porpoise).  Diffen is an online, user-

editable encyclopedia. Its articles compare and contrast similar topics. I chose this article because it 

differed in both style and subject matter from the other source text.  After simplification, the article was 

8 paragraphs and 88 sentences long. The interpretation process produced 751 fact statements across 

150 DRSs. That the texts produced a very similar number of fact statements is not unexpected, given 

that they are of similar length. Both texts were simplified syntactically, as described in Section 2.2.4. The 

SUSD16 text was simplified prior to the design of the algorithms, while the Dolphin/Porpoise text was 

simplified later. 

4.6.2 Baselines 

In this work, I use the Local Sentence Interpretation and the Local Paragraph Interpretation as baselines. 

I considered several other potential baselines for the experiment. A truly random baseline – that is, one 

that contains a random set of facts from the source – is very unlikely to perform well, and would be 

trivial to beat. Another potential baseline is to use the entire interpretation as a case. This has clear 

disadvantages, especially for very large sources. While it has the unique advantage that it is guaranteed 

to contain any fact you might want (provided that that fact is mentioned at all), entire discourse cases 
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are impractical for many tasks. (This is what motivates this type of case construction in the first place.) 

The more practical units of information are the sentence and the paragraph.  

4.6.3 Reading and Disambiguation 

Reading was performed by EA NLU (Section 2.2), embedded in the Companion Cognitive Architecture 

(Section 2.3), using the standard pipeline as described in those sections. 

To factor out any domain or task specific influences, ambiguities were resolved automatically using a 

small set of general-purpose heuristics. For example, the reading system prefers interpretations that 

treat compound noun phrases like “solar panel” as atomic referents when they are available, such as 

SolarPanel. An interpretation that treated “solar panel” as a generic panel that is in some way 

related to the sun would be less preferred. Another heuristic prefers interpretations that include more 

facts. If the heuristics do not favor any of the choices in a set, the system chooses randomly. EA TMS 

(Section 2.2.7) makes TMS assertions that ensure that the system does not select incompatible choices. 

Given that these heuristics do not involve any learned statistics and are task independent, they perform 

quite well. Overall, they selected a correct answer for 86.6 percent of the 886 lexical choice sets 

generated by the source texts used in this chapter.  Errors generated by the heuristics tend to be 

systematic, which helps prevent analogical processing mismatches.  For example, the system 

consistently selected Pipe-SmokingDevice over Pipe-GenericConduit as the interpretation 

of the word “pipe.” This was incorrect; the corpus discusses rainwater collection systems and solar 

heating, and it does not discuss smoking.  In the first occurrence of “pipe”, the only applicable heuristic 

was random choice, and smoking device was selected.  Subsequent choices were influenced by a 

heuristic that prefers concepts already used in the interpretation.  Hence very similar, albeit partially 

incorrect, structures were created, facilitating analogical comparison. Note that this set of heuristics 
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does not do well on specifically challenging WSD tasks; when used on the Stars corpus (Section 3.8.1; 

Appendix 0), for example, it performs no better than chance.  

4.6.4 Comparison and Contrast with Topic Pairs 

Comparisons between cases built around arbitrary seeds are not very illuminating. For example, 

consider cases built around these two seeds: 

a) The flow of water through a pipe in a solar heating system 

b) Earth’s atmosphere 

A comparison between those cases might produce a few matches, but the similarities and differences 

between those two things are unlikely to be of much interest.  For this reason, we use comparisons 

between topic pairs. A topic pair is a set of two seeds where we might expect the cases generated 

around the seeds to have interesting similarities and differences. They might be descriptions of a system 

at two different points of operation, two concepts that are similar or easily confused, or the base and 

target of an explicit analogy. For our evaluation, the topic pairs were hand-selected before the system 

read the source texts. The topic pairs were things that were natural to compare, such as the solar 

heating system at different points of operation, or parallel aspects of the anatomy or behaviors of 

dolphins and porpoises. 

4.6.5 Experiment 3 Setup 

In total, the experiment used 24 topic pairs, meaning that 24 comparisons were made. 11 of these were 

from the SUSD text. 13 were from the Dolphin/Porpoise text. In every comparison, the seeds in the topic 

pair placed an additional constraint on the analogy mapping: SME was only allowed to produce 

mappings where the seeds correspond to each other. For example, for example, when comparing and 

contrasting a solar heating system and a rainwater collection system, it started with those two things 
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already in alignment. This allowed the local paragraph interpretation method to operate over cases built 

from seeds in the same paragraph, as otherwise it would simply map every entity and fact to itself. 

Two primary evaluation metrics are used. The first is recall on identifying similarities and differences 

between the things being compared. For each comparison, we wrote two to 15 goal facts, prior to 

running any of the methods over them. Across the 24 comparisons, 118 goal facts were used in total. 64 

of these came from the SUSD text, and 54 came from the Dolphin/Porpoise text. We discarded 7 

additional goal facts because they relied on context not given directly in the text, meaning that no case 

construction method could generate them. Each goal fact represented one similarity or difference in the 

text. The score for a method, given a pair of cases, was equal to the number of goal facts that it found. 

Similarities were scored if the similarity was among the correspondences produced by SME. Differences 

were scored if the difference was among the candidate inferences produced by SME. For example, when 

cases produced from our example seed were compared to a rainwater collector system seed, all of the 

methods produced a correspondence between 

 (fullnessOfContainer solar-heating-system01 PartiallyFull) 

and 

 (fullnessOfContainer rainwater-collection-system01 PartiallyFull) 

The system derived these facts from “At the start of the day, the solar heating system is semifull” and 

“At the start of the day, the rainwater collection system is semifull,” respectively.) This indicates that the 

system could tell that one commonality between the rainwater collection system and the solar heating 

system, in the scenario being described, is that they are both partially full. Goal facts are compositional. 

This rewards more complete answers while still providing some credit for partial answers. For example, 
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rather than using “In the second case, heat flows from the solar collector to the storage tank” as a single 

example of a difference between two cases, we break it into three statements: One saying that a flow of 

heat exists, which appears as (objectMoving flow01 heat15), one saying that that flow leaves 

from the solar collector, which appears as (fromLocation flow01 solar-collector24), 

and one saying that flow goes to the storage tank, which appears as (toLocation flow01 

storage-tank35). We do not include simple features as separate goal facts to be found. For 

example, when comparing a solar heating system’s operation at different times of the day, the fact that 

it is a solar heating system in both cases was not among the goal facts. All goal facts were relationships 

between two entities. 

The second evaluation metric is generation efficiency. This is the percentage of fact-level 

correspondences and candidate inferences that were used to produce goal facts. This penalizes 

including facts that were not useful for this compare and contrast task, although such facts might be 

useful for other tasks. This is important because larger cases are more computationally expensive to 

reason with. A secondary benefit of smaller cases is that they are easier for humans to read. 

I did consider alternate evaluation metrics.  Simply looking for the presence of important facts in cases 

would not be effective; facts must show up in both cases in a comparison and must be alignable to be 

useful.  Identifying goal facts involving similarities and differences is more objective, providing a gold 

standard for the task of comparing learned knowledge. 

4.6.6 Experiment 3 Results 

I ran each of the four methods on both of the texts, measuring the number of goal facts each found and 

the generation efficiency. The results appear in Table 8. Each column presents results for one of the 
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methods described earlier. The results from the two source texts are combined, as they were generally 

comparable for all methods. 

• Local Sentence Interpretation (LSI) 

• Local Paragraph Interpretation (LPI) 

• Sentence-Based Segmentation (SBS) 

• Fact-Based Segmentation (FBS) 

 

Goal Facts Found is the number of the goal facts the method produced. Goal Facts Found (%) is the 

percent of the possible goal facts that the method produced 

Unique Correct is the number of goal facts where the method was the only one of the four that correctly 

produced it. It is a measure of each method’s ability to produce interesting conclusions that the others 

did not. In some situations, including most instances when LPI was the only method to produce a goal 

fact, it is because the other methods did not include the relevant facts. In other instances, such as when 

SBS was the only method to produce the goal fact, one or more of the other methods did include the 

relevant facts, but failed to produce the proper correspondence or candidate inferences. This occurs 

when extra facts in the case interfered with the match. 

Table 8. Experiment 3 Results 

Method LSI LPI SBS FBS 

Goal Facts Found 27 81 59 88 

Goal Facts Found (%) 22.9 68.6 50 74.5 

Generation Efficiency (%) 8.4 2.5 8.3 3.7 

Unique Correct 0 8 3 8 

Avg. Case Size 8.9 107.2 16.1 66.8 

Average CIs 8.4 49.9 19.5 52.0 

Average Corrs. 3.4 69.7 7.0 35.3 
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Avg. Case Size is the average size of the bases and targets produced by the system when constructing 

cases based on the seeds. There is no functional difference between bases and targets for this task, as 

candidate inferences are produced in both directions. Because of this, their sizes are simply averaged 

together in the table. Average CIs is the average number of candidate inferences produced by the 

system when comparing cases generated using the method. Average Corrs is the average number of 

fact-level correspondences.  

 

The accuracy of Fact-Based Segmentation and of Local Paragraph Interpretation are very similar. While 

the two methods found different sets of goal facts, the difference in their overall performance was not 

statistically significant. The difference between the performance of LSI and the other three methods was 

statistically significant (p < 0.005), as was the difference between SBS and the other three.  In total, 100 

of the 118 goal facts (84.7%) were produced by at least one of the methods. Error! Reference source 

not found. illustrates the performance and the average case size of each method. 

Figure 10. Performance and the average case size of each method. 

 

 Table 9. Experimental results on cases where the base and target seeds are in the same paragraph. 

Method LSI LPI SBS FBS 

Total Correct 20 35 33 41 

Correct (%) 32.3 56.5 53.2 66.1 
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One of the theoretical weaknesses of LPI is that it might suffer in instances where both of the seeds 

appear in the same paragraph. This is because it produces pairs of cases that contain all of the same 

facts in those instances. Because the seeds (which are different) are automatically mapped to each 

other, it still produces some useful correspondences and candidate inferences. However, we might 

suspect that it may be disadvantaged. To test this, we looked at the results on only the comparisons 

made between entities in the same paragraph. In total, 65 goal facts came from comparisons of this 

type. The accuracy on just those goal facts is shown in Table 9. LPI’s performance is worse than on the 

full set, but the difference is not statistically significant, and the difference between LPI and FBS on this 

limited set is also still not significant. 

4.6.7 Error Analysis 

One challenge in evaluating the system’s overall performance is that assigning blame for failures is not 

easy. I conducted an error analysis to explore this issue. This provides additional insight into the 

strengths and weaknesses of each method. Each time a method missed a goal fact, we classified the 

source of the error. For example, LSI can miss a similarity goal fact by failing to include the facts in the 

cases to begin with, while FBS can miss the same goal fact by including the corresponding facts, but they 

do not align when the cases are compared via SME. Some types of errors can occlude other types. For 

instance, if a case construction method fails to include the relevant facts when building the case, it is 

impossible for those facts to end up being mismatched in the SME mapping. 

To evaluate the performance of the case construction methods in more detail, we performed a 

comprehensive error analysis. Table 10 summarizes the sources of error for each of the methods. Each 

goal fact missed by a method was assigned a source of error, which might vary from method to method. 

For example, it is possible for LSI to miss a similarity goal fact by failing to include the facts in the cases 



99 

 

 

 

to begin with, while FBS misses the same goal fact by including the corresponding facts, but failing to 

have them align when the cases are mapped with SME. It is possible for some types of errors to occlude 

other types. For example, if one of the case construction methods failed to include the relevant facts 

when building the case, it is impossible for those facts to end up being mismatched in the SME mapping. 

 

Facts Not In Case refers to errors where key facts were in the global interpretation, but not included by 

the case construction method. Unsurprisingly, the methods that build larger cases were much less likely 

to produce this type of error. This error accounts for the vast majority of Local Sentence Interpretation’s 

errors. For that method, any goal fact that needs information from another sentence will fail as a result 

of this error. For example, in the Dolphin/Porpoise corpus, one of the goal facts when comparing the 

anatomy of the two creatures is that dolphins have conical teeth, while porpoises have flat teeth. These 

facts are in different sentences than the one that introduces the comparison between the anatomy of 

the two creatures. Because of this, the cases produced bys Local Sentence Interpretation lack those 

facts. 

SME Representation Mismatch refers to errors where facts representing a similarity were present in the 

base and the target, but were sufficiently different representationally that SME did not match them 

together. Although local paragraph interpretation and fact-based segmentation missed more goal facts 

as a result of this error, they are not more likely to produce representation mismatches. All four case 

construction methods start with the same global interpretation, and all use the same representations as 

Table 10. Sources of error in experiment 3. 

Method LSI LPI SBS FBS 

Facts Not In Case 85 1 49 11 

SME Representation Mismatch 2 4 2 4 

Wrong Interpretation Choice 2 2 4 3 

SME Alignment Mismatch 2 27 6 12 
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a result. The reason that LPI and FBS missed more goal facts as a result of this error is that, in some 

instances, LSI and SBS did not include any relevant facts at all. An example of where this occurred was 

when the system compared the rainwater collection system to the solar heating system while both are 

operating. The rainwater collection system is collecting rainwater, and the solar heating system is 

collecting heat. One of the similarity goal facts was that both the rainwater and the heat are being 

collected. However, the way the source text phrases the sentences that provide this information 

resulted in different representations. The text says that the solar collector “absorbs the sunlight” (“solar 

radiation is absorbed,” in the presimplified version.) Because the statements the system produces for 

absorption events are not similar to the statements for falling events, the falling of rainwater onto the 

system’s collection tray does not align with the absorption of heat by the solar panel.  Repairing such 

issues would require rerepresentation (Yan, Forbus, & Gentner, 2003).  

Wrong Interpretation Choice is very similar to SME Representation Mismatch, but refers to errors where 

the mismatch can be traced to the disambiguation heuristics making an incorrect choice. As noted 

above, the heuristics used were not perfect; 13.4 percent of the semantic ambiguities were resolved 

incorrectly. However, such disambiguation errors often do not affect the SME matches.  Only 

disambiguation errors leading to mismatches were coded as this type of error. 

SME Alignment Mismatch refers to errors where the base and the target both contain the necessary fact 

or facts to identify a similarity or difference, but SME did not produce an appropriate correspondence or 

candidate inference because the match did not align appropriately. An example of this error is when the 

system was asked to compare the anatomy of the dolphin and the porpoise. One of the goal facts is that 

dolphins have long noses, while porpoises have flat noses. Because these facts appeared in the same 

paragraph, local paragraph interpretation produced a base and a target that both included both cases. 
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Although it aligned dolphin with porpoise, as constrained by the question asked, it did not align the 

dolphin’s nose in the base with the porpoise’s nose in the target. Rather, it aligned the dolphin’s nose in 

the base with the dolphin’s nose in the target, and did the same with the porpoise’s nose. As a result, 

the system drew no candidate inferences. 

4.7 Discussion 

The results suggest that Fact-Based Segmentation and Local Paragraph interpretation are the best of the 

four methods tested on the primary measure, partially falsifying the hypothesis that FBS would produce 

superior performance. FBS had the advantage that it produced the best accuracy results while achieving 

significantly higher generation efficiency than LPI. This comes at the cost of a small amount of additional 

overhead during the case construction step, as producing cases with FBS requires extra computation. In 

the evaluation, LPI had very little trouble with Facts Not In Case errors. This is because the goal facts 

were all local. In a comparison where facts are spread more evenly across a source text, it would be less 

effective.  

Local Sentence Interpretation fared the worst. This is not surprising. While it produced relatively little 

noise, as indicated by its high generation efficiency, information is spread across multiple sentences too 

frequently for it to get the information required to make broader comparisons between two entities. 

Even in situations where smaller cases are desirable, Sentence-Based Segmentation produced much 

better results with only moderately larger cases. 

There appears to be a tradeoff between accuracy and generation efficiency. This result is reasonable; 

methods that produce more facts are less likely to produce the Facts Not In Case error, provided that 

the additional facts being added are at least potentially useful. There are instances where including 
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additional facts in the case produced SME Alignment Mismatch errors, but at the case sizes produced by 

the four methods described here, those are rarer. 

That Fact-based Segmentation produces smaller cases than Local Paragraph Interpretation gives it 

several advantages. First, smaller cases are easier for a human to read and understand. Even with the 

aid of visualization tools or pidginization functions, large cases can be difficult for a human reader to 

make sense of, especially if they contain a great deal of superfluous information. Second, smaller cases 

can be processed more quickly in many case-based reasoning tasks. SME is efficient – it operates in O(n
2
 

log(n)) time – but it still operates faster over smaller cases.   
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5 Analogical Dialogue Acts 

Instructional texts and other written explanations often use analogy to convey new concepts and 

systems of related ideas to learners. Some of the best-known ways of explaining certain concepts is via 

analogy. For example, the greenhouse effect takes its name from the analogy most often used to explain 

it, and the Rutherford-Bohr model of the atom is often explained via analogy to the solar system. Heat 

and electricity are sometimes explained by comparing them to water. Analogy is useful for human 

learners (Gentner & Smith, 2013). The analogy in Figure 11, for example, is from a book on solar heating, 

designed to help the reader understand heat by analogy to water. The behavior of water is likely familiar 

to the book’s middle school audience. It is the base of the analogy, the side that is already known. The 

behavior of heat is what is being learned about. It is the target of the analogy. We will use this analogy 

as an example throughout this section. 

A learning by reading system that simply applies ordinary reading processes to such analogies when they 

appear in text will miss the point of that text. At best, it might end up with irrelevant information about 

the base of the analogy in the interpretation. At worst, the analogy introduces noise or even confusion 

into the interpretation that interferes with later reasoning. This work combines Gentner’s (1983) 

structure-mapping theory with ideas from dialogue act theory (e.g. Traum, 2000) to describe a catalog of 

analogical dialogue acts (ADAs) which capture the functional roles that discourse elements play in 

instructional analogies.  

Our goal is ultimately to provide human-like capabilities for understanding instructional analogies, in 

order to understand human learning better, and to improve learning by reading. We view these goals as 

closely aligned, since, after all, natural language texts are intended for human readers. We outline 

criteria for identifying ADAs in text, but we mainly focus on what operations they imply for discourse 
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processing. We provide evidence that this model captures important aspects of understanding 

instructional analogies using a simulation that uses knowledge gleaned from reading instructional 

analogies to answer questions. 

Specifically, analogical dialogue acts are used to: 

• Build structured base and target cases from a textual analogy 

• Provide constraints on which elements of the base and the target must (or must not) 

correspond 

This allows an LBR system to process analogies. The candidate inferences gleaned though this process 

provide additional information. As a result, the system demonstrates improved understanding, as 

measured by question answering performance. The work detailed in this chapter was first described in 

Barbella and Forbus (2011). 
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5.1 Dialogue Act Theory 

Dialogue act theories (Allen & Perrault, 1980) are concerned with the roles utterances play in discourse 

and the effects they have on the world or on understanding. An utterance identified as a Requesting 

Information, for example, might take the syntactic form of a question that makes the information 

requested explicit, as in “What time is it?”, but does not have to do so. The surface manifestation might 

Figure 11. A paragraph read by the system, with the ADA labels applied to each of its sentences. 

A house is like a bucket with holes in the bottom. 

Introduce Comparison 

Insulating the house is like shrinking the holes in the bucket.  

Introduce Correspondence 

If the house is insulated, a furnace uses less heat to warm the house. 

Extend Target 

Similarly, if we shrink the holes, a faucet uses less water to fill the bucket. 

Introduce Candidate Inference, Extend Base 

The furnace adds an amount of heat. 

The amount of the heat added matches the amount of the heat that leaks out. 

Extend Target 

Similarly, the faucet adds an amount of water. 

Introduce Candidate Inference, Extend Base 

The amount of the water added matches the amount of the water that leaks out. 

Extend Base 

If the amount of the heat that is leaking is decreased, the amount of the heat that the furnace adds is decreased.  

Extend Target 

If we shrink the holes in the bucket, the amount of the water that is leaking is decreased. 

Because of this decrease, less water is needed from the faucet.  

Extend Base 
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instead be a statement, or an indirect question, as in “Do you have the time?” Dialogue acts are part of 

all linguistic communication, not just verbal communication.  

5.2 ADAs Defined 

We claim that there exists a set of analogical dialogue acts that are used in communicating analogies. 

Like other dialogue acts, they have criteria by which they can be recognized and a set of implied 

commitments and obligations for the dialogue participants. There are a wide variety of dialogue act 

models, but all include some variation of Inform (Traum, 2000), which indicates the intent to describe 

the state of the world. Analogical dialogue acts can be viewed as specializations of Inform. Each 

specifically deals with the role that an utterance plays in building up or extending an analogy.  The ADAs 

are motivated by the analogy ontology described in Forbus, Mostek, and Ferguson (2002). This ontology 

is derived from structure-mapping theory (Gentner, 1983; Section 2.4.1). Each of the ADAs correspond 

to an operation that informs or controls the structure mapping process. This includes both building the 

base and the target and constraining the mapping process. The ADAs are as follows: 

• Introduce Comparison: Identifies the base and target to be compared. For example, in “A house 

is like a bucket with holes in the bottom,” the base is a situation where water leaks from a 

bucket, and the target is a situation where heat leaks from a house. While this signals that an 

analogy is being used, it is not necessarily the first statement in an analogy.  In Figure 11, the 

comparison is introduced explicitly in a single sentence, but more complex cases might involve 

combining information across multiple sentences - parallel sentence structure in subsequent 

sentences, for example. Determining which of the domains is the base and which is the target 

requires a non-local assessment about what the topic of the text is. (This particular example is 

drawn from a book on solar energy, and the rest of the chapter makes clear that heat is the 
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domain being taught.) Since candidate inferences can be constructed in both directions, an 

incorrect assessment is not fatal. Processing an Introduce Comparison act requires producing 

appropriate cases for the base and target. The target is constrained by what has already been 

introduced in the text. The base, unless it has been used before in the same text and is being 

used in a consistent manner, must be constructed from the reader’s knowledge. Often the most 

relevant elements of the base and target are highlighted explicitly, but frequently information 

from the reader’s memory is required as well. Because it places two entities in correspondence, 

an Introduce Comparison act is also an Introduce Correspondence act.  

• Introduce Correspondence: These acts provide clues as to the author’s intended mapping.  For 

example, “Insulating the house is like shrinking the holes in the bucket” indicates that those two 

entities correspond.  Sometimes Introduce Correspondence acts are expressed as identity 

statements – for example, “The glass is the atmosphere” in the standard 

greenhouse/atmosphere analogy.  Sometimes these acts are signaled by pairs of sentences, one 

expressing a fact about the base followed immediately by one about the target, with similar 

syntax. These latter constructions are not currently detected by the system. 

• Block Correspondence: This is an utterance that establishes that some element of the base and 

some element of the target should not be in alignment in a mapping between the base and 

target domains. This is typically a pair that might otherwise be tempting for a reader to align. 

(“The ozone layer’s hole is not like an ordinary hole in the roof, however.”) Block 

Correspondence statements are very rare in written text, although they appear in resources like 

Harrison & Coll (2007), which assist educators with interactive instruction. 
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• Extend Base, Extend Target: These acts add information to the base or target of a comparison, 

respectively.  Such acts are identified by relationships and/or entities being mentioned in the 

same statement as an entity in the base or target, but which is not a statement about 

correspondences or candidate inferences.  For example, “If we shrink the holes in the bucket, 

the amount of the water that is leaking is decreased” extends the base, and “The amount of the 

heat added matches the amount of the heat that leaks out” extends the target.  

• Introduce Candidate Inference: This introduces a candidate inference - information about the 

target domain - which the reader is intended to have drawn from the analogy. (“Similarly, if we 

shrink the holes, a faucet uses less water to fill the bucket.”)  

• Block Candidate Inference: This is an utterance that establishes that a candidate inference that 

a reader might be tempted to draw should not be drawn. (“Unlike solar radiation, heat flow that 

occurs by conduction is unaffected by color.”) Block Candidate Inference statements are very 

rare in written text, although like Block Correspondence they appear in resources focused on 

interactive instruction. 

5.2.1 Strategies for Identifying Analogical Dialogue Acts 

The analogical dialogue act status of any statement is contextual. This is most obviously true for 

Extending Base/Target statements, which nearly always look like any non-analogy statement, and are 

distinguished only because they relate to an entity being discussed in another analogical statement, 

such as an Introduce Comparison. However, it is also true for other ADA types. Introduce Comparison, 

for example, can be identified by statements that take forms like “An X is like a Y,” but not all Introduce 

Comparison statements look like that, and not all statements like that are introducing a correspondence. 

For example, that sentence form is also used to describe literal similarities, as in “A tangerine is like an 
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orange.”  A comparison can also be introduced in sentences that do not have any particular format that 

suggests analogy when considered in isolation. For example, consider the sentence pair “Water leaks 

from a bucket when the water level gets too high. Heat leaks from a solar collector when the 

temperature gets too high.” These sentences use parallel structure to imply a comparison should be 

made. 

The system currently does not attempt to skim away false positives; every similarity is treated as a 

potential analogy. Detecting false positives is an important part of a more general area of future work 

where the system more carefully evaluates the facts it learns via analogy, as false analogy detection 

positives are one potential source of incorrect inferences. 

5.2.2 Incorporating World Knowledge 

In understanding instructional analogies, a human learner is expected to draw upon their existing world 

knowledge, particularly about the base domain. It is typical for many of the most relevant parts of the 

base domain to be explained in the text. For example, a text about the greenhouse effect will usually 

explain how a greenhouse works. Despite this, many common-sense facts about the base will generally 

not be explicitly asserted. For example, most descriptions of the greenhouse effect do not explicitly 

state that the roof of the greenhouse covers the greenhouse. That is an important part of the structure 

of the analogy – the roof and the greenhouse have a relationship similar to that of the planet and the 

atmosphere. However, the relationship between a building and its roof is one that the reader is 

expected to bring with them. For this reason, fully processing many instructional analogies requires 

retrieving and incorporating knowledge from outside the text. 

In some situations, whole cases representing a prior experience may be retrieved from memory. In 

other situations, cases may be constructed dynamically from one’s general knowledge of the world. This 
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latter approach is what the system uses in the work described here. Section 5.3.4 details the full strategy 

the system uses.  

One challenge in this area is accommodating representational differences. Operating with a language 

system that uses representations from the Cyc knowledge base is a huge advantage here, as it ensures 

some uniformity of representation. However, Cyc is sufficiently expressive and complex that there are 

often multiple reasonable ways to represent something. This is especially true when starting from 

natural language. 

5.3 Method 

The overall pipeline used by the system to process text that may contain analogy is shown in Figure 12. 

The source text is processed using EA NLU, as described in Section 2.2. In this section, we detail the 

specific strategies used by the implementation of analogical dialogue act processing that the evaluation 

uses. The system begins by parsing and disambiguating text as normal. Coreference resolution occurs as 

described in Section 2.2.3. Analogical dialogue act processing is an additional discourse interpretation 

process that occurs after coreference is complete. The system attempts to prove the analogical dialogue 

act status of each statement in the discourse.  
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5.3.1 Detecting Analogical Dialogue Acts 

Detecting different types of analogical dialogue acts is not trivial. In the current implementation of the 

system, a limited set of heuristics is used to detect each act. Three types of ADA, Introduce Comparison, 

Introduce Correspondence, and Block Correspondence, are detected using primarily local features. 

Figure 12: A chart of the pipeline used in analogical dialogue act processing. 
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• Introduce Comparison, Introduce Correspondence: These acts are detected by the presence of 

similarTo facts in the discourse interpretation. similarTo is a relation that says that two 

things are similar. The first statement that generates a similarTo fact is an Introduce 

Comparison. Any subsequent facts that do so are Introduce Correspondence. The first argument 

to similarTo is taken to be an element of the target, and the second is taken to be an 

element of the base. For example, the statement “A house is like a bucket with holes in the 

bottom,” from our example, produces a fact of the form (similarTo house2294 

bucket2372). 

• Block Correspondence: These acts are detected by looking for similarTo fact in negated sub-

DRSs. Any statement that produces a negated similarTo fact is Block Correspondence.  

The other types of ADA cannot be locally detected. The search for these types is triggered by the 

appearance of Introduce Comparison. All of these types rely on knowing that elements they mention are 

in the base or in the target already. For this reason, they are searched for iteratively. 

• Introduce Candidate Inference: These are currently detected by looking for sentences that 

begin with the “Similarly,...” construction and that mention an element already known to be in 

the base or in the target. Specifically, the detection rules check the interpretation for facts of 

the form that that construction produces. 

• Block Candidate Inference: These are currently detected by looking for sentences with the 

“However,…” construction and that mention an element already known to be in the base or in 

the target. As with Introduce Candidate Inference, the detection rules check the interpretation 

for facts of the form that that construction produces. 
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• Extend Base, Extend Target: These acts are detected according to two criteria. In order to be 

included as an Extend Base dialogue act, a statement must both: 

o Mention an entity already known to be in the base. This may be an entity that is part of 

another Extend Base statement, or it may be an entity known to be in the base for other 

reasons. 

o NOT be an Introducing Correspondence or Introducing Candidate Inference dialogue act 

or an Extend act of the other type. Extend Base and Extend Target are the last type of 

analogical dialogue act considered for each statement. A statement must be found to be 

none of the others before it will be classified as Extend Base or Extend Target. 

Further development of the set of detection heuristics is an important part of my future work with 

ADAs. These heuristics are both too narrow to catch all common formulations of analogy and broad 

enough to produce false positives. There is also a certain degree of brittleness in the detection 

heuristics. For example, the heuristics assume that in all statements of the form “The [base-element] is 

like the [target-element],” the base and the target remain in a consistent order. No harm is done if the 

base and target are consistently reversed, but if the base is sometimes first and is sometimes second, 

the heuristics will fail. 

It is unlikely that any simple set of heuristics can account for the breadth of possible ways of expressing 

analogy. Learning to better recognize occurrences of analogy is an important avenue for future work. 

This includes being able to identify and separate multiple analogies within a single discourse. 
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5.3.2 Using ADAs 

Each type of analogical dialogue act creates certain obligations for the system. These obligations can 

affect what is included in the base or the target. They can also affect the classification of other 

statements in the discourse. Finally, they can be used to place additional constraints on the analogy. 

• Introduce Comparison: When an Introduce Correspondence act is detected, the base and target 

are checked to see if they already contain the entities or relationships mentioned.  If they do 

not, then the descriptions are extended to include them.  When the case construction process 

builds the base and the target, it also includes a required correspondence relation between the 

two entities (Section 2.4.2). The system begins its search for other analogical dialogue acts in the 

discourse.  

• Introduce Correspondence: These acts are handled the same way that Introduce Comparison 

acts are, except they do not trigger the search for other types of ADA. This is because Introduce 

Comparison has already done that. 

• Extend Base, Extend Target: The base or the target (as appropriate) is checked to see if it 

already contains the relationships introduced in the statement. If it does not, it is extended to 

include those relationships. 

• Block Correspondence: The base and target are checked to see if they already contain the 

entities or relationships mentioned.  If they do not, then the descriptions are extended to 

include them.  When the case construction process builds the base and the target, it also 

includes an excluded correspondence relation between the two entities (Section 2.4.2). The 

system begins its search for other analogical dialogue acts in the discourse. 
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• Introduce Candidate Inference, Block Candidate Inference: These are handled as Extend Base 

or Extend Target, as appropriate. More sophisticated handling of the entailments created by 

these acts is an area of future work. 

5.3.3 Case Construction and Constraining Analogy 

The analogical dialogue act classifications are used to construct a base case and a target case. After a 

statement is classified as an analogical dialogue act, facts that are derived from that statement are 

added to the base or the target, as appropriate. From our example, the base would include all of the 

facts in the statements: 

• Similarly, if we shrink the holes, a faucet uses less water to fill the bucket. 

• Similarly, the faucet adds an amount of water.  

• The amount of the water added matches the amount of the water that leaks out.  

• If we shrink the holes in the bucket, the amount of the water that is leaking is decreased. 

• Because of this decrease, less water is needed from the faucet 

These statements are all classified as Extend Base statements. The base would also include select facts 

from the following statements: 

• A house is like a bucket with holes in the bottom. 

• Insulating a house is like reducing the size of the holes in the bucket. 

These statements are classified as either Introduce Comparison or Introduce Correspondence. Only facts 

derived from the part of the statement describing the base are added to the base case. The target case 

is constructed in a similar fashion. 
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The Introduce Comparison, Introduce Correspondence, and Block Correspondence analogical dialogue 

acts all place additional constraints on the analogical match. For the first two, this constraint is a 

required correspondence between the entities that are directly compared to each other in the 

statement. For example, the statement “A house is like a bucket with holes in the bottom” is an 

Introduce Comparison statement. As part of the processing, a constraint of the form 

(requiredCorrespondence bucket1324 house1132) is produced. While the statement 

also mentions holes and the bottom of the bucket, no particular match obligations are produced for 

those entities. Block Correspondence acts are handled in a similar way, except that the system produces 

an excludedCorrespondence constraint instead.  

Table 11 shows some of the entities put into correspondence as a result of reading and doing analogical 

dialogue act processing on the text from Figure 11. Two of the correspondences were the result of 

requiredCorrespondence statements that the system produced as part of analogical dialogue act 

processing. 

 

Table 11: Example correspondences from the example in Figure 11, along with their match hypothesis score. Bolded 

rows represent correspondences that were required in the match because they were in Introduce Comparison or 

Introduce Correspondence statements. 

Base Target Match Hypothesis Score 

use93130 use92620 0.216 

amount106103 amount93921 0.244 

add106075 add93894 0.108 

water106136 heat93953 0.14 

faucet93123 furnace92615 0.108 

leak106882 leak94694 0.14 

add106287 add94099 0.108 

water93210 heat92691 0.036 

shrink92216 insulate92115 0.036 

match106344 match94156 0.036 

bucket91861 house91787 0 
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In our example, several useful candidate inferences are generated by the system. Table 12 shows some 

of these, along with glosses of their meaning. Individually, these candidate inferences – even the correct 

ones – are not useful on their own. They can be combined with other information, however, to allow the 

system to answer questions it could not otherwise answer.  

 

For example, consider the question “What reduces the loss of heat from the house?” This question 

cannot be answered directly from the text. The system knows that there is a loss of some amount of 

heat from the house, but it doesn’t know anything about a decrease in that amount. Using the first 

three facts in Table 12 combined with this information, the system is able to answer the question. 

Not all of the candidate inferences generated by the system are necessarily correct. As Table 12 shows, 

some are spurious. For example, one of the candidate inferences produced is (isa furnace92615 

Tap-PlumbingFixture). This was produced because the furnace and the faucet were placed into 

alignment. One of the features of the faucet is that it is a Tap-PlumbingFixture. The system 

hypothesized that this was a feature of the furnace as well. 

Table 12: A selection of the candidate inferences produced by the system in our example case, shown in Figure 11. The 

inferences in regular type are factually correct; the one in italics are supported by the match, but not factually correct. 

The glosses are approximate English translations of the inferences. As produced, the inferences are contextualized. This 

context has been omitted here for space. 

Inference Gloss 
(causes-Underspecified insulate92115 (skolem 
decrease119615)) 

“Insulation causes a decrease in the amount (of 

heat).” 

 
(isa (skolem decrease119615) DecreaseEvent) 
(possessiveRelation amount93921 (skolem 
decrease119615)) 
(isa furnace92615 Tap-PlumbingFixture) “The furnace is a faucet.” 
(isa house91787 Bucket) “The house is a bucket.” 
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5.3.4 Retrieving World Knowledge 

As discussed earlier (Section 5.2.2), analogies in text are frequently incomplete. They often rely on 

structure that is assumed to be familiar to the reader, but which is not restated explicitly in the text. This 

poses a problem for any system that relies exclusively on the discourse interpretation to populate the 

base and the target. 

The system makes use of rule macro predicates to augment the base and target cases after constructing 

them. Rule macro predicates are defined as part of the Cyc ontology. The rule macro predicates used by 

the system relate three things: 

• Two collections or entities 

• A predicate that relates those two  arguments 

The nature of the relationship is defined by the specific rule macro predicate. For example, one rule 

macro predicate is relationAllAll. In addition to a predicate, relationAllAll takes two 

collections. (relationAllAll ?pred ?collection1 ?collection2) means that for ALL 

members of ?collection1 and ALL members of ?collection2, (?pred ?member1 

?member2) holds. For example, (relationAllExists covers-Generic Greenhouse 

RoofOfAConstruction) means that all greenhouses are covered by a roof (not necessarily the 

same roof, of course).  The system can use this knowledge to expand a case in two ways: 

- If the system knows that a greenhouse and a roof have been mentioned in a discourse, it can 

hypothesize that a covers-Generic relationship holds between them. (Closed rule macro 

predicate elaboration.) 



119 

 

 

 

- If a greenhouse has been mentioned, but no roof has been mentioned, the system can 

introduce a roof entity, and create a covers-Generic relation between the greenhouse and 

that roof. (Open rule macro predicate elaboration.) 

This is extremely powerful for elaborating cases. If a text mentions “the greenhouse” and later mentions 

“the roof,” the system can build a connection between the two like a human would, even if no explicit 

relationships are drawn between them in the text. As the experiment below demonstrates, it is also 

important for understanding many textual analogies. The system always prefers closed rule macro 

predicate elaboration to open rule macro predicate elaboration, and will not hypothesize the existence 

of a new entity if an appropriate one is available in the context already. The information in the rule 

macro predicates used by the system was sourced from Simple English Wikipedia articles on the topics 

in question. 

Rule macro predicate elaboration is not infallible. It runs the risk of hypothesizing relationships that 

aren’t true. For example, consider the statement “If we go up onto the roof, we should be able to see 

the greenhouse.” In that sentence, it is very unlikely that the roof is the roof the greenhouse, so there is 

not likely a covers-Generic relationship between the roof and the greenhouse. Avoiding this type 

of error requires sophisticated general-purpose reasoning, and is outside the scope of this dissertation. 

Another issue with rule macro predicate elaboration – particularly open rule macro predicate 

elaboration – is that it potentially introduces irrelevant information. For example, a rule macro predicate 

might specify that all rain falls from a cloud. While this is true, it may not be relevant to every scenario 

that involves rain. Fortunately, small amounts of irrelevant information do not typically interfere with 

matching. 
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The elaboration occurs as part of a discourse interpretation process (Section 2.2.1). This triggers a set of 

general-purpose reasoning queries that were designed for the sake of the work described here, but 

which have since been used elsewhere. 

5.4 Evaluation 

When evaluating the ADA handling strategies used by the system, it is important to distinguish what is 

actually tested by different evaluation strategies. Examination of how the system classifies different 

statements is a good evaluation metric for the ADA detection process, but does not actually 

demonstrate that the constructed cases are useful. For this reason, we turn to question-answering 

performance as a means of evaluating the system. The primary hypothesis tested by the experiment is 

that classifying analogical dialogue acts and using them to construct a match between the cases can be 

used to improve question answering performance. Specifically, the extra information gleaned through 

candidate inferences that result from the analogy match can be used to improve question answering. A 

secondary hypothesis is that, in situations where only a partial description can be built directly from the 

discourse interpretation, bringing in additional background knowledge will allow the system to further 

improve its question answering performance. 

While looking at how the system classifies different utterances is not a complete evaluation metric on its 

own, it does serve as a sanity check.  It is also important for distinguishing at which point in the process 

errors arise as well. Because complete evaluation of the system’s overall performance requires the 

integration of several systems, there are several stages in the process where errors might arise. 

The first place errors might occur is in language processing. Natural language understanding is far from a 

solved problem. Certain types of error in parsing, word sense disambiguation, and coreference can 

potentially interfere with identification of analogical dialogue acts. They can also potentially interfere 
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with the quality of the match. In order to factor out parsing issues as a source of error, the texts used as 

part of the corpus for the experiment were manually simplified into forms that the parser can handle, as 

described in Section 2.2.4. 

Errors can also potentially be the result of representational differences. If the base and the target are 

described in different language, that can result in different representations in the discourse 

interpretation. This has the potential to interfere with the match, producing incorrect candidate 

inferences. As it is not possible to factor out this source of error without excessive tailoring, this is a 

potential source of error in the evaluation 

5.4.1 Corpus 

The corpus used for this work consists of paragraph-length chunks of text excerpted from various 

instructional materials, covering a variety of science domains. While there is no part of the algorithm 

that we expect to be domain-specific, this demonstrates a degree of generality. Because we are not 

primarily concerned with evaluating detection in these experiments, the corpus does not include things 

that look like they might be analogies, but are not, such as instances where literal similarity between 

two things is described. If it did, those would be detected as potential analogies, as the system does not 

currently attempt to detect false positives. The corpus was simplified as described in Section 2.2.4, with 

one additional restriction: Introduce Comparison and Introduce Correspondence statements were 

simplified into one of the forms supported by the detection system, in the instances where that was not 

already the case. Table 13 summarizes the corpus. 
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5.4.2 Manual Question Generation 

To test the effectiveness of knowledge capture, comprehension questions similar to those found in 

middle-school science texts were generated by independent readers of the texts (see Figure 13  for an 

example).  The questions were generated by independent readers, instructed to design questions that 

require understanding the analogy in order to answer them. The readers were provided with the 

simplified versions of the texts.  Some of the questions require combining pre-existing information from 

the knowledge base with knowledge gleaned from the text. Figure 13 contains an example of a question 

generated in this way; the remainder appear in Appendix E. In total, the experiment used 22 questions, 

which were manually translated to predicate calculus.

 

Table 13: Corpus Information.  #B/#A = # sentences before/after conversion to QRG-CE 

Example 

Rubber Ball/Sound Echo 

Gold mine/Collecting Solar Energy 

Bucket of water/Hot brick 

Water storage/Heat storage 

Phase change materials 

Faucet/Thermostat and furnace 

Stopping a leak/Insulation 

Rain/Sunlight 

Stagnation depth/Stagnation temperature 

Intensity of rain/sunlight 

Power plant/Mitochondrion 

Greenhouse/Atmosphere (Text 1) 

Greenhouse/Atmosphere (Text 2) 

 

Figure 13: Question for analogy shown in Figure 11.   

Question: What reduces the loss of heat from the house? 
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5.4.3 Experimental Conditions 

I ran four experimental conditions, based on a 2x2 design. The first factor is whether the system used 

analogical dialogue acts at all. In the positive case (+A), it automatically detected ADAs, used them to 

construct an analogy, and included the candidate inferences in the context where questions were asked. 

In the negative case (-A), it did not do these things. The second factor is whether what was learned from 

the text was augmented with information from the knowledge base (+K) or not (-K). 

The system asks questions in a special case containing the target case of the analogy along with all of the 

candidate inferences that are produced. The system automatically generates this case as part of ADA 

processing. 

5.5 Results 

The results appear in Table 14. The information from the text alone is sufficient to answer only one 

question, with or without information from the KB (-A, -K/+K).  Understanding the analogy using just 

knowledge from the text enables just over a third of the questions to be answered (+A, -K). Allowing the 

system to add background knowledge from the knowledge base to the analogy raises this to over 80% 

(+A, +K).  This demonstrates that ADAs can help a system learn from an analogy, including harnessing 

existing knowledge better to improve performance. These differences are all significant (p < .01). By 

incorporating existing knowledge – relational knowledge in particular – the system is able to build a 

more complete picture of the base domain.  
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In all cases, questions that are answered in a condition that answered more questions correctly are a 

superset of the questions answered in conditions that answered fewer. In other words, there are no 

questions where the conditions that produced worse performance did better than any condition that 

produced better performance. The differences between all conditions (except for [-A,-K] and [-A,+K], 

which performed identically) are statistically significant. The complete question-by-question results 

appear in Appendix E. 

5.6 Discussion 

Instructional analogies are very useful to human readers. Replicating their advantages for a human 

reader, however, requires marshaling a variety of resources and capabilities. In particular, both accurate 

analysis of the analogy itself and the ability to retrieve knowledge about the domains under discussion 

are vital. In our corpus of examples, the system was only able to achieve robust performance when both 

of those capabilities are in place. It is important to note that in no case did the system simply retrieve 

the correct answer from memory. In all cases where using background knowledge helped, it was 

because background knowledge allowed for a more complete picture of the case, permitting a better or 

more complete analogy. 

Table 14: Results for question answering.  +/- means with/without; A means analogy; K means facts retrieved from 

knowledge base. 

Condition -K +K 

-A 1 

0.45 

1 

.045 

+A 8 

.364 

18 

.818 
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Even with the ability to draw on background knowledge and comprehend an analogy, the system still 

misses 4 of the 22 questions. In each of these cases, representational differences between the base and 

the target prevented the system from producing a match that was complete and correct enough to 

produce the necessary candidate inferences. Automatically adapting the representations to account for 

this is a major challenge for the system going forward. I discuss this further in Section 7.5.3. 

As mentioned in Section 5.4.3, as part of analogical dialogue act processing the system produces a case 

that contains all of the facts in the target domain as well as all of the candidate inferences from the 

analogies. Candidate inferences are not guaranteed to be valid, and they frequently are not, particularly 

for cross-domain analogy. A reasonable concern is that by using all of the candidate inferences without 

filtering, performance on practical tasks might suffer. For the question-answering task used in the 

experiment, the inclusion of spurious candidate inferences was harmless. Incorrect candidate inferences 

can only interfere with such a task if they match the pattern the query is looking for, which did not occur 

in any of the examples. For other uses, however, filtering the inferences in some way will be necessary. 

In particular, the inferences should never just be incorporated into a long-term knowledge store without 

some form of validation. I discuss this further in Section 7.5.5. 

In conclusion, the work here demonstrates that a system can learn from instructional analogies to 

improve its understanding as measured on a question answering test. The system would benefit from 

additional robustness in several stages of processing, but even at its current state of refinement it 

produces strong improvements in comprehension. 
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6 Related Work  

6.1 Other Cognitive Architectures 

Companions is not the only cognitive architecture which has been used for language tasks. Because of 

the importance of language, many cognitive architectures (and similar systems) have some strategies for 

handling it. In this section, I briefly summarize some of the work that has been done with language in 

other cognitive architectures. Compared to Companions, most cognitive architectures are relatively skill-

oriented. Companions also supports analogy at a more foundational level than other cognitive 

architectures. 

6.1.1 ACT-R 

The ACT-R architecture (Anderson & Lebiere, 1998) is one of the most widely used and developed-for 

cognitive architectures available. This cognitive architecture traces its history back over thirty years, and 

as part of its long history there have been numerous attempts to integrate language. The core ACT-R 

system does not privilege language in any fashion; there is no inherent accommodation for it, and it 

must be implemented using ACT-R’s standard rules for cognition (Anderson et al., 2004). Efforts have 

been made to model language at many levels, from learning individual rules (Taatgen & Anderson, 2002) 

to more comprehensive systems. ACT-R processing uses productions. These are rules that fire when 

their prerequisites are met and produce some output. Information is stored a “chunks”, bits of 

declarative memory which can be placed in the system’s buffers. These give the central processing 

module and the other modules access to each other. ACT-R is largely symbolic, but it uses subsymbolic 

processes for rule activation and functions like decay. ACT-R, in its core formulation, has a general 

perception module through which all input to the system comes.  
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ACT-R permits and supports language systems that are only loosely integrated into the system as a 

whole, allowing a wide variety of such systems to be potentially integrated into a fuller model. Ball 

(2003), for example, adapts the Double R Model, a model of grammar developed for this purpose, as an 

ACT-R module. Because ACT-R lacks the powerful unification and backtracking capabilities possessed by 

systems like Prolog, accounts of language understanding implemented in the cognitive architecture 

cannot rely on these capabilities. Ball (2004) attempts to use these limitations as an advantage, 

bounding the potential search space based on what isn’t feasible. In this regard, Double R Theory is in 

keeping with a general ACT-R philosophy of keeping things cognitively plausible. 

6.1.2 SOAR 

Like ACT-R, SOAR (Laird, 2008) is a widely-used cognitive architecture that has been put to a wide variety 

of uses. Efforts in SOAR to handle natural language include NL-SOAR (Lehman et al., 1991). SOAR focuses 

on presenting a unified model of cognition, and NL-SOAR is part of this tradition. SOAR’s model of 

cognition is built around applying operators to reach a goal state from a current state. Production rules 

are used to both make goals and determine which operators to apply. The dependency trees built by NL-

SOAR can be used to perform simple question answering and inference tasks (including multimodal 

ones), but are less focused on long-term learning. 

6.2 Other NLU Strategies 

Learning by reading – particularly the natural language understanding part – is an extensively explored 

field, so we will be covering it only at a very high level here, aside from the approaches that most closely 

resemble our own.  The most direct antecedent to our work in LBR is Learning Reader (Forbus et al., 

2007). It has the same focus on producing facts from reading that are useful for reasoning, uses the 

ResearchCyc contents in its knowledge base, and executes operations using some of the same systems, 
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such as MAC/FAC (see section 2.3.4). It also uses automatically generated parameterized questions for 

evaluation. Möbius (Barker et al., 2007) produces concept-relation-concept triples and integrates them 

with a knowledge base. Kleo, Möbius’s descendant, (Kim & Porter, 2009) starts with a small knowledge 

base, which it expands by integrating into it information learned by reading. It then uses that knowledge 

base to assist in further reading, forming a bootstrapping cycle. Both systems rely on fairly simple NLP 

techniques and use a system of generating new concepts based on the word used which led to some 

duplicate concepts, reducing the connectivity of the resulting representations. Never-Ending Language 

Learner (Carlson et al., 2010), or NELL, also generates facts by reading. It promotes facts to the level of 

knowledge based on the number of sources in which they appear and the believed reliability of those 

sources. Unlike our system, it does not parse sentences or attempt to map words it reads to conceptual 

representations. It uses word patterns such as “mayor of X” and cooccurrence in lists, among other 

techniques, to learn which categories things belong to and to learn relationships between them. Keeping 

accuracy high when learning by reading is not an easy problem, as work on NELL demonstrates: accuracy 

falls sharply as the system continues to add knowledge.  Computer Processable Language (CPL; Clark et 

al., 2005) defines a set of restrictions on sentence construction that simplify machine reading while still 

allowing relatively natural input. Our language system is considerably more flexible than CPL. It can 

process a greater variety of sentence structures, allows pronouns, and does not make use of specific 

keywords within sentences. Some systems handle similar issues from another direction. HALO, for 

example (Friedland et al., 2004; Clark et al., 2007) provided a means for experts to construct knowledge 

through an interface without having to go directly to the level of knowledge engineering, and used 

controlled language for question input.  
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6.2.1 Machine Learning and Big Data 

One of the dominant paradigms in natural language understanding today is machine learning, using 

large labeled training corpora. Such systems are very powerful, and are often behind state-of-the-art 

performance in a variety of natural language understanding tasks. Despite access to a superhuman 

amount of training data, however, current performance lags significantly behind humans even on 

relatively straightforward tasks such as word sense disambiguation (Navigli, 2009). That this is the case 

is not altogether surprising. Humans have the ability to marshal together a wide variety of resources for 

the sake of understanding language, and semantics and pragmatics almost certainly play some role. (It is 

also worth noting that, especially for fine-grained semantic choices, humans do not perform this task 

perfectly.) We hope that methods like the ones presented in this paper can serve as a complement to 

such methods. 

6.2.2 Open Information Extraction 

Open Information extraction systems such as TextRunner (Banko et al., 2007) seek to derive knowledge 

from a source such as the web, much like learning by reading systems do. These systems take a very 

different approach, however. Rather than extracting as much information as possible from a limited 

number of sources, they extract relational tuples from a very wide corpus (such as the entire web), and 

rely on redundancy to compute confidence. These have the advantage of generating a large number of 

tuples very efficiently, but the disadvantage of being less well-suited to capturing unique or interrelated 

knowledge. Additionally, they do not support reasoning over the learned information. 

6.2.3 Watson 

While not a cognitive architecture in a conventional sense, IBM’s Watson system (Fan et al., 2010; Fan et 

al., 2011) has been used to perform question answering tasks using a large knowledge base as a 

resource. The PRISMATIC knowledge base (Fan et al., 2012) generated as part of the IBM Watson effort 
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is a landmark in learning by reading research, having accumulated close to a billion syntactic sentence 

frames; these were shown to be useful in factoid question answering that went well beyond the prior 

state of the art.  It sidesteps word sense disambiguation entirely, by treating words themselves as 

predicates. 

6.3 Related Work in Word Sense Disambiguation 

Our goal is a system that performs word sense disambiguation in the context of a cognitive agent that 

learns by reading. Thus the sense inventories we use are drawn from conceptual representations, rather 

than language-level vocabularies such as WordNet synsets.  Nevertheless, the challenges are similar, as 

noted above.  Our system most closely resembles CatchWord (Hearst, 1991) in that it incorporates a mix 

of semantic and syntactic information from the local context of a word in a set of labeled training data.  

However, CatchWord does not use analogy for retrieval over structured relational representations 

constructed from the training data.  

We start with the contents of the ResearchCyc KB, plus our own extensions, which are extremely 

accurate because they are vetted via a careful (and laborious) knowledge engineering process.  Machine 

reading research typically tries to start with less.  Some efforts (e.g., Etzioni et al., 2005) only generate 

word-level descriptions, such as triples of co-occurring words.  While relatively straightforward to 

gather, such representations do not provide the kind of conceptual precision needed for reasoning.  

Systems like DIRT (Pantel et al., 2007) go further by extracting rules involving triples from dependency 

trees used in parsing.  As Clark and Harrison (2010) point out, DIRT’s 12 million inference rules are quite 

noisy, with longer chains being less reliable.  DART (Clark & Harrison, 2009) and KNEXT (Van Durme & 

Schubert, 2008) have improved on accuracy somewhat while still being fully automatically extracted.   
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6.4 Related Work in Case Construction 

Textual CBR systems have generally focused on building cases from text resources with the goal of using 

them as pointers to those text resources, rather than building standalone cases that are content in and 

of themselves. This is a sensible approach for many usage scenarios. For example, a system that 

retrieves legal documents – a very common task for TCBR - may as well just point off to the original 

source. The degree of specificity and nuance present in legal documents is such that a legal professional 

would almost certainly want to look at the original case in most scenarios. In many other scenarios, 

however, a structured case – or a generalization of structured cases – does make sense as a response. 

Most importantly, having a case representation represented using the same formalisms as a general-

purpose reasoning system allows for the system to reason about the case and its contents, to find places 

where cases contradict each other, and to find other connections between cases. A case that merely 

acts as a pointer to a natural-language document does not have these properties. For this reason, we 

focus on constructing cases that are themselves useful for general reasoning.  

Another area where related work might be useful to the future of the case construction work described 

in this thesis is in automatically measuring case quality. The work here uses a practical task as a measure 

of quality. However, there have been efforts in the field of topic modeling (Blei, 2012) to measure the 

coherence of the sets of words that topic modeling algorithms extract from documents (Minmo et al., 

2011). 
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7 Conclusions and Future Work 

7.1 Conclusions 

In this dissertation, I present several roles for analogy in learning by reading. These are part of an overall 

agenda for learning by reading that focuses on maximizing the amount of information gleaned from a 

relatively small amount of text. There is nothing, in principle, keeping any of the methods described in 

this thesis from scaling for use with larger corpora. However, methods that do not rely on large corpora 

have advantages in situations where such corpora do not exist. 

The methods described here are integrated into the Companions cognitive architecture, as part of a 

long-term goal to construct a long-lived reading and reasoning system. They take advantage of several 

key features of Companions, such as the support for analogy.  However, all of the work could be 

adapted to use in other systems. The primary external resource required is the Structure Mapping 

Engine, along with MAC/FAC and SAGE, which make use of SME. 

Analogical word sense disambiguation addresses an important problem in long-term learning by 

reading. As systems scale toward greater reasoning capabilities, representation systems that do not 

adequately distinguish between senses of a word risk compromising the ability of a system to reason 

about what it has read. AWSD has key advantages in that it requires relatively little training data and is 

capable of making distinctions in situations where simple heuristics fail. 

Analogical reasoning is powerful, but relies on effective representations for the base and target. Natural 

language understanding can provide knowledge as grist for reasoning, but additional steps are required 

to get from the interpretations produced by NLU and cases for reasoning. Connection-based case 

construction is a powerful and flexible tool for building such cases. 



133 

 

 

 

Analogy is a powerful tool for educating humans, and analogical dialogue act processing makes that tool 

available for educating cognitive systems as well. It transforms what would otherwise be a liability in 

instructional texts, the use of instructional analogy, into a significant advantage. As we move forward, 

we plan to investigate the roles that analogy can play in other settings, such as a machine tutoring of 

people. 

Together, these contributions, along with the engineering- and evaluation-oriented contributions that 

go into supporting them, advance the capabilities of the Companions system in learning by reading in a 

number of areas. They also lay a foundation for further improvement in learning by reading. 

7.2 Analogical Word Sense Disambiguation 

7.2.1 Improved Case Construction 

There are two directions for future work in AWSD that are particularly important.  First, we want to 

improve accuracy and learning rates even further.  We plan to use the statistical information 

accumulated in the generalizations to ascertain which relationships and attributes are pulling their 

weight, and adapt the case construction process accordingly. This should increase the discrimination of 

analogical retrieval.  We also plan to explore whether additional conceptual information from the 

discourse context can be used to speed learning.  For example, in a text on solar energy, the word 

“heat” rarely refers to spiciness.  Additionally, inspired by the use of confidence estimation in IBM’s 

Watson (Gondek et al., 2012), we plan to explore techniques for enabling the system to provide 

confidence values for the choices it makes, based on numerical similarity estimates computed by SME. 

These confidence values can be combined with evidence from other disambiguation techniques (e.g., 

abduction), both to make initial choices and to help guide backtracking during semantic interpretation. 
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Additionally, we plan to explore letting the system use its own disambiguations as precedents, at least 

where its confidence in them is sufficiently high. 

7.2.2 Integration into Long-term Learning by Reading 

Analogical word sense disambiguation is integrated into Companions as a disambiguation heuristic. This 

means that it can and will be part of future long-term learning by reading experiments done using that 

system. One important task in scaling up to reading longer texts is identifying when and where different 

disambiguation strategies should be deployed. AWSD is capable of performing well on disambiguation 

tasks that our simpler set of heuristics used for general disambiguation is hopeless on, but it is also more 

expensive than those heuristics. This goal is symbiotic with improving the case construction process 

itself. As the system scales to reading larger and more deeply integrated things, we will have the data 

necessary to identify additional weaknesses that may exist in the AWSD system. 

As the system scales into use for a greater number of reasoning tasks, these can in turn be used to 

further improve the system’s disambiguation strategies. Performance on such tasks can supplement 

gold standard comparisons as a measure of the quality of a disambiguation strategy. As implemented, 

AWSD is a Companions disambiguation heuristic, meaning that it can easily be used alongside other such 

heuristics, allowing them to complement each other’s strengths.  

7.3 Improving Connection-Based Case Construction 

The case construction algorithms as presented have utility for certain tasks, but there are a number of 

variations and extensions on the algorithms possible, some of which I believe to be worth pursuing 

further. 
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7.3.1 Exploiting Additional Resources 

There are resources available to case construction algorithms that are not used in any of those 

described in Section 4. Some of these represent promising extensions to the work, while others were 

considered but ultimately rejected for various reasons. 

One unexploited resource that the algorithm has access to is parse information. This includes part of 

speech information, attachment information, and other parse features. Most of the important 

information that can be derived from this information is already reflected in the discourse 

interpretation. For example, in the sentence “He eats pizza using a knife,”  “using” is attached to “eats,” 

rather than “pizza.” (The person eats pizza by using a knife to cut it; the pizza is not itself using a knife.) 

This is already represented in the discourse interpretation, which includes the fact (instrument-

Generic use2208 pizza2196). The pilot experiments did not turn up any particularly fertile uses 

for parse information in case construction, so none of the algorithms use it. Any case construction 

algorithm that uses parse information has an additional cost, as well, in that it has to either occur while 

the system has the parse in memory, or detailed parse information has to be stored long-term. 

The knowledge base might also serve as a resource for case construction, above and beyond the role its 

lexical frames play in parsing the sentence and producing the interpretation in the first place and the 

role its ontology plays in providing a vocabulary of concepts and relationships. One way in which the KB 

can serve as a resource is by providing additional information about what concepts are related to each 

other. This is potentially useful in situations where the text assumes knowledge on the part of the 

reader. For example, in a description of the greenhouse effect that uses the well-known analogy 

between the earth’s atmosphere and a greenhouse, the text might mention the greenhouse, its walls 

and roof, and the glass that they are made of without actually mentioning them together such that a 
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case construction algorithm working just with the text would be able to tell that they are related. A 

knowledge base might know that a greenhouse is a type of structure and that structures have walls and 

roofs, and that in the case of a greenhouse these are typically made of glass. By exploiting this 

knowledge, the case construction algorithm can potentially make connections between entities that are 

not explicitly connected in the discourse interpretation.  

A second way to make use of an existing knowledge base is as a source of facts for the case itself. Rather 

than pulling facts only from the discourse interpretation, a case construction algorithm could in principle 

also include facts from the knowledge base itself, chosen according to the same strategy used to choose 

facts from the discourse interpretation, or chosen using a different (likely more restrictive) strategy. 

Analogical dialogue act processing uses a version of this to elaborate cases, as described in Section 5.3.4, 

and this could perhaps be extended to build better cases during connection-based case construction. 

7.3.2 Additional Control Strategies 

The techniques described in Section 4 treat all collections the same and all predicates (except isa) the 

same. This makes the methods very general, but if additional parameters can be cheaply specified, they 

can lend additional power. For example, one of the hazards of allowing a case construction algorithm to 

extend to isa facts when they share a collection with an isa fact already in the case is that there are 

some collections where this is unlikely to bring in relevant facts. Multiple instances of SolarPanel are 

more likely to be relevant to each other (in most contexts) than multiple instances of 

MovementEvent. In certain contexts, it may be valuable to specify (or learn) a set of collections that 

do not automatically bring in all other members of that collection. As currently implemented, the system 

can use notForSegmentationPred and notForSegmentationCollection to keep facts 

with the designated predicate and isa-facts about the designated collection (respectively) from being 
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included in cases altogether. The experiments described above only use these control predicates to keep 

bookkeeping facts and structural predicates (such as missingSemTrans) from being improperly 

extended from, but they could also be used as semantics-specific filters. 

Other types of facts in the discourse interpretation cases, such as the facts that form qualitative process 

frames (McFate, Forbus, & Hinrichs, 2014), may be important to include in the case, but not extend 

from. notForSegmentationChainingPred and 

notForSegmentationChainingCollection can be used for this. 

Another option available to a case construction algorithm is to use depth costs other than 0 and 1 in 

order to make certain operations more costly. For example, we might assign a cost of 3 to the operation 

that extends from a fact to the sentence that fact is derived from. If the depth cap is not much higher 

than 3, this would mean that facts that were added at a relatively high depth themselves would not be 

able to include their entire sentences, and facts that were added because they were in the same 

sentence as an existing fact would be limited in their ability to add new things.  

7.3.3 Representation 

One consequence of the case construction algorithms described in this thesis is that the structure of the 

discourse interpretation affects what sort of connections are made, on top of determining what the 

facts themselves look like. This means that the language system itself affects the behavior of the case 

construction process, as it both sets up relationships between DRSs and manages the small amount of 

semantic information built into the grammar. The frames it uses to generate the interpretation also 

affect the behavior. As noted above, the semantic frames used by our language system are heavily 

Davidsonian. One consequence of this is that it takes Fact-Based Segmentation two iterations to get 

from one actor in an event to another actor in the same event. For example, in “The cat ate a pizza,” if 
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the seed is “cat,” the system would first add (performedBy eat8546 cat7884), and then at the 

next depth it would add (objectConsumed eat8546 pizza8781). With a different 

representation scheme, this information might all be added at once. In the work presented in this thesis, 

the representation that case construction operates over is exactly what is produced by the language 

system. Exploring the impact of different representation schemes on the performance of different 

algorithms would be part of adapting the work presented here to other language systems. 

7.4 Exploiting Connection-Based Case Construction 

In addition to the algorithmic refinements suggested above, there is future work in Connection-Based 

Case Construction that involves expanding the range of tasks to which it is applied.  

7.4.1 Incorporating Multiple Sources 

In the work described in this thesis, the pool of facts from which the cases are built is the discourse 

interpretation of a reading of a single source text. Fact-Based Segmentation, however, can be used to 

combine facts from multiple sources, whether that is multiple source texts or a source text and a 

knowledge base. This potentially makes it a valuable tool for knowledge integration. The other case 

construction methods do not allow for this flexibility, which is an advantage of FBS. 

7.4.2 Correcting Interpretation Errors 

Natural language understanding is imperfect. Parse errors, word sense disambiguation errors, 

coreference errors, and missing or incorrect lexical information can introduce errors into a final 

interpretation. Having cases that can be compared to existing cases describing similar things can 

potentially be used for error detection, just as it can be used to detect similarities and differences. 
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7.4.3 Additional Uses for Cases 

The experiment in this thesis demonstrates the utility of cases constructed using the methods presented 

here for the task of comparison and contrast. Those are not the only tasks where such cases might be 

useful, however. Future work in this area might explore using cases for tasks like analogical retrieval. As 

discussed in Section 6.4, there has been extensive work done in textual case-based reasoning, and the 

cases produced using my methods could potentially be applied to some of the same problems. 

7.5 Analogical Dialogue Acts 

7.5.1 Less frequent ADAs 

The ADA ontology is drawn from the constraints that can be placed on analogy as defined by the analogy 

ontology (Forbus, Mostek, & Ferguson, 2002). However, certain constraints – blocking a candidate 

inference and blocking a correspondence – do not appear to be common in instructional texts. One 

reason for this may be that they require anticipating mismatches that are sensible and likely to be made, 

but incorrect. It is intuitive that such mismatches might be relatively rare; if a mismatch is not sensible, 

there is little reason to explicitly rule it out, as common sense will do that. If an analogy naturally invites 

a large number of sensible but incorrect mappings, its value as an instructional tool is diminished. These 

acts may be more common in a more interactive environment, where the instructor can react to a 

student who appears to be drawing incorrect conclusions or making incorrect mappings.  

7.5.2 Enhancing Detection 

One of the shortcomings of the analogical dialogue acts system as currently implemented is that the 

detection heuristics are fairly simplistic, although in different ways. The detection heuristics for 

everything except Extend Base and Extend Target work by detecting one of a relatively small number of 

predicates in the interpretation.  A simple way to enhance detection is to simply identify more such 
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patterns. However, this is not a complete solution. Some instances of things like Introduce Comparison 

rely on parallel phrasing between two sentences, neither of which has any special analogical function on 

its own. More sophisticated detection is necessary to correctly handle such constructions. 

Extend Base and Extend Target make use of a version of Fact-Based Segmentation for detection, with no 

depth limit. For the corpus of instructional analogies used in the experiment described in this thesis, this 

works extremely well. However, if the analogies were embedded in a much longer source text passage, 

this could result in the entire source text being classified as these types of statements, something that 

may be undesirable. This is of particular concern if there are multiple analogies present in the text, as is 

sometimes the case. More complex bounds on the identification of these two types of ADA will likely be 

necessary as part of scaling up. 

Another detection concern is that currently the system assumes that any pattern in the knowledge that 

matches the detection pattern for Introduce Comparison is an Introduce Comparison. It makes no 

attempt at any stage to weed out false positives. This has two potential costs. First, the inferences 

generated in these circumstances are unlikely to be very helpful. As the system scales up to increased 

autonomy, generating useless inferences and analogies risks introducing noise into the store of 

accumulated knowledge. A secondary concern is that, while ADA processing is not terribly expensive in 

terms of time or resources, building up the cases does take some time, and it would be better if that 

could be avoided in situations where it would not do any good. 

7.5.3 Robustness 

More than the other work presented here, ADA is sensitive to changes in phrasing and representation. 

While this is not unique to this system, ADA composes several systems, including coreference, structure 

mapping, its own detection, and knowledge elaboration, which are all representation-sensitive. Even 
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with extended detection criteria, this remains an area where future work could lead to further 

improvements 

7.5.4 Background Knowledge and Elaboration 

The current knowledge elaboration processes used by the system make use of rule macro predicates. 

This is a powerful and flexible system, but it does not exploit the full capabilities of the knowledge base. 

The system could easily be extended in the future to make use of other implication statements in the 

knowledge base as well. 

Currently, the system runs the elaboration process exactly once, looking for all applicable rule macro 

predicates for all of the collections used in the case. A more sophisticated version of the system might 

only elaborate on certain entities, something that might be useful as the system’s library of available 

relationships expands. 

Finally, the system currently assumes that all relationships hypothesized with knowledge elaboration are 

correct and relevant. For some rule macro predicates, correctness is a reasonably safe assumption, 

although it is usually possible to come up with a counterexample. For example, in “If we go up onto the 

roof, we should be able to see the greenhouse,” the roof is not the roof of the greenhouse, even though 

all greenhouses have roofs. Nevertheless, this rule macro predicate probably has a reasonable hit rate 

(and never fires incorrectly in the experimental corpus.) For many other rule macro predicates, it is 

much less safe to assume that they hold just because the collections they govern are present. For 

example, (relationAllExists victim Murder Person) indicates that for every murder 

event, there is some person who is the victim of the murder. It is not at all safe to assume that a 

situation that involves a murder and a person is one where the person is the victim of the murder. They 

might be the murderer or a detective. It does not require a contrived scenario for there to be a person 
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and a murder in the same text where that person is not the victim of the murder. There are two 

potential consequences of a false elaboration of this sort. The more serious is that it can spoil the 

analogy entirely. If a murderer is identified as the victim of the murder, he or she might be aligned with 

the victim of another crime, rather than with the perpetrator, which means that most of the candidate 

inferences stemming from that part of the match are likely to be bad. Less seriously, relationships that 

are irrelevant can still contribute to noise in the match, potentially increasing the number of bad 

candidate inferences that are drawn. 

7.5.5 Validating Candidate Inferences 

Even absent errors that might creep in earlier in the pipeline, SME does not guarantee that all of the 

candidate inferences drawn are correct. After a match is made, candidate inferences are drawn based 

on the structure of the match – semantics do not play a role. In practice, many candidate inferences 

drawn from a large, highly-structured cross-domain analogy are incorrect. This is because while the base 

and the target typically have many relational properties – and sometimes features – in common, there 

are usually some differences. The most common type of erroneous candidate inference is when features 

are mapped from the base to the target and vice versa. In a cross-domain analogy, these are nearly 

always false. For example, after aligning the faucet with the furnace in the example from Chapter 5, the 

system concludes that the faucet is a furnace and the furnace is a faucet. Spurious relationships are 

much less common, but still occur, especially as the result of knowledge elaboration, which sometimes 

brings in irrelevant relationships. For question-answering purposes, these are largely harmless (in no 

case in the experiment presented in the chapter did spurious inferences result in the question being 

missed.) For the purpose of building up a knowledge store, however, a separate vetting step for 

candidate inferences will be necessary. Questions can assist with this; if knowledge is useful for 

answering a question, it is much more likely to be relevant. 
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7.5.6 Generation and Interactivity 

An entirely different use for analogical dialogue acts is in natural language generation. Translating an 

existing analogy into natural language might be done by working backwards from the analogy to 

determine which sort of analogical dialogue acts are necessary to convey the elements of and 

constraints on the analogy. 

A more ambitious extension of analogical dialogue act processing is deploying it in interactive dialogue 

situations, where a human and a machine are communicating back and forth. If a system is attempting 

to tutor a human learner using an analogy, part of that process involves figuring out which ADAs are 

necessary to constrain a human user’s misconceptions, and then generating statements that serve that 

function. This extends on generation as an additional application for analogical dialogue acts. 

7.6 Long-term Learning by Reading 

All of the work described in this thesis is aimed at eventually scaling up to longer-term learning by 

reading for general or targeted knowledge acquisition. There are several additional challenges that 

come with this. Some are specific to the techniques described in this thesis, and are described in those 

sections. There are other challenges, however, that are more general. 

Knowledge integration is the task of connecting new knowledge with existing knowledge in order to 

facilitate reasoning. Part of knowledge integration is evaluating the knowledge that is learned by 

reading. A system that naively accepts almost everything that is learned by reading will very quickly 

become clogged with erroneous facts. These would interfere with both reasoning and checking the 

validity of new facts. One major source of such errors is errors in natural language understanding. 

Almost every step of NLU is imperfect, and potentially introduces errors into the interpretation. 

Inaccuracies in the source texts themselves can also contribute errors. While this is a relatively minor 
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concern, it becomes a larger factor if the internet is used as a source. Additionally, sources that are 

otherwise trustworthy can simply be out of date. For example, an astronomy book published before 

2006 will state that there are nine planets in our solar system, because at the time Pluto was still 

considered a planet. 

For these reasons, it is necessarily for a system to be able to estimate its confidence in what it has 

learned. This estimation can be based on both how confident the system is in its parsing and 

disambiguation and on how well the information it learned fits in with what it already knows. For 

example, suppose that the system believes, as a result of what it has read, that basketball player 

Michael Jordan was an astronomical star (rather than a star in the “famous person” sense of the word.) 

If this contradicts things that are already known about Michael Jordan – for example, that he is a human, 

and a single entity cannot be both a human and a star – the system might doubt this new information. If 

the system wasn’t that confident in that choice to begin with – for example, if the choice of 

“astronomical star” over “famous person” was mostly a guess – that is further reason to lack confidence 

in the new fact (isa MichaelJordan Star). If facts are assigned a degree of confidence, that can 

be used to mediate how they are used in the future. 

The learning by reading system, as currently implemented, does not simply deposit learned facts into a 

single large repository. Rather, they are grouped by individual readings of source texts, as described in 

Section 2.2.8. A major goal for the system going forward is developing means for integrating the 

information in these readings with each other and with information already in the knowledge base. 
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Appendix: Charts, Tables, Selected Sources, etc. 

A. Full Coreference Specification 

The coreference resolution algorithm is designed to be general purpose, and should not be altered for 

the sake of handling specific examples, unless those examples are emblematic of broad patterns in 

language. The algorithm is part of QRG-CE. This means that it is not intended to handle every English 

construction. Rather, the design goal is that there should be some way to express things we want to 

express. The following is a description of the way the system worked at the time the experiments 

described above were run.  The coreference system can be used with sketching to allow for references 

to things in a sketch. As those details are not relevant to the work described in this thesis, they are 

omitted here. 

A.1 Behavior 

There are four things that seek reference resolution: 

• Direct reference: "The cat," "the city." (Indirect reference - "a cat" - does not seek coreference.) 

• Verbs 

• This, that - These are used for backreference and demonstrative reference. 

• Other pronouns - It, him, her. This is called pronominal reference. 

The outputs of running the coreference mechanism are referent statements. These are what the rest 

of the system cares about, either directly or because they are what the lifting process that builds the 

discourse interpretation DRS looks at. candidateReferent and resolveReferences 

statements are part of the process of generating referent statements, but they're not completed 

reference resolution. Because coreferent items are resolved to the same symbol, reference is effectively 
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transitive and commutative. Things that look for the subject of a sentence look for the actual head of 

the subject of the sentence. In "The dog's hat is fancy," "hat" is the subject, not "dog." 

A.2 filterByPreference and preferredBinding 

filterByPreference is a dynamic update predicate. It takes one argument, a statement. When 

filterByPreference is wrapped around a query, the query is handled specially. First, the system 

executes the query normally. If more than one binding is returned, however, it queries it again, this time 

wrapped in preferredBinding. Special rules handle queries wrapped in preferred binding, and 

select from among the possible bindings. The priorities generated by the binding operations described 

below are used by preferredBinding to select from among competing options. 

A.3 Backreference 

If the reference is a Backreference-NLAttrType (“this” or “that”), the term refers to the DRS of 

the previous sentence. (Priority = 0.1). 

• "The valve closes. This causes the temperature to rise." "This" will refer to the sentence DRS of 

"The valve closes". 

A.4 Possessed Reference 

If an entity is possessed (anything that uses the possessiveRelation predicate), it will refer to 

anything it can match to that is possessed by the same thing. (Priority = 0.1). If it cannot refer to 

something that is possessed by the same thing, it will follow the rules as normal, and if it has no other 

options, it will refer to itself. It will not refer to something that's possessed by something else, though, 

or in a different container. 
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• "The capital of the country is small. A capital is nice. The capital of the country is cold." Third 

'capital' refers to first, because they are possessed by the same thing. 

• "A capital is nice. A capital of the state is small. The capital of the country is cold." Third 'capital' 

refers to first. It skips over the second one because it is possessed by something else. 

A.5 Standard Pronominal Reference 

Pronominal reference is triggered by pronouns. Pronominal reference only looks one sentence back. 

This is because it uses sentenceAttachment, which looks one sentence back. It does NOT look 

within the same sentence. 

• "A man eats a sandwich. He smiles." "He" refers to "man". 

• "A man eats a sandwich. The sky is gray. He smiles." "He" refers to nothing, because there is no 

valid referent in the previous sentence. (We know that "sky" cannot be "he".) 

Gendered pronouns do not match to a different gender. 

• "A man eats a sandwich. She smiles." "She" does not refer to anything. 

Pronouns do not match to events. 

Gendered pronouns prefer to map to subjects of sentences, rather than non-subjects. (Priority = 0.2). 

• "A man gives a man a sandwich. He smiles." "He" matches to the first "man". 

• "A cat gives a boy a dead rat. He smiles." "He" matches to "cat". 

It still needs to be valid in terms of gender, however. 

• "A woman gives a boy a sandwich. He smiles." "He" matches to "boy". 

• "A woman gives a cat a treat. He smiles." "He" matches to "cat". 
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Number has to match too. The system does not support singular "they". 

• "The cats are tired. They sleep." "They" matches to "cats". 

• "A dog sees the cats. They run." "They" matches to "cats". 

• "The cats are tired. He sleeps." "He" matches to nothing. 

These distinctions are handled by matchPronounFeatures. We do not distinguish between things 

that could possibly have a specified gender (cat, president) and things that do have a specified gender 

(girl, boy). If a gender is possible, it is a valid referent. The system does not do any reasoning to 

determine anything's gender; it only looks to see if the collection it belongs to is a spec of 

MaleOrganism or FemaleOrganism. (For example, it knows that “girl” is a spec of 

FemaleOrganism.) 

• "My cat is male. She eats bugs." "She" refers to "cat", because "cat" could be any gender, and 

we do not look for other evidence of gender. The coreference mechanism does not do the 

additional reasoning to determine that the cat is male, and thus would not be referred to as 

“she.” 

A.6 Standard Definite Reference 

Definite reference is triggered by nouns introduced with the definite article, “the.” 

Definite reference prefers subjects to non-subjects. 

• "My dog gave your dog a tennis ball. The dog smiled." "The dog" refers to my dog. 

When there are two non-subjects to resolve to, it resolves to nothing. 

• "The cat saw your dog and my dog. The dog ran." "The dog" resolves to nothing. 
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• "The cat saw a dog. The dog ran." "The dog" resolves to "a dog". 

Definite reference is based on collection membership, not words. 

• "A hound was hungry. The dog ate a boot." If Dog is the collection for both “dog” and “hound,” 

they will corefer. 

Definite reference will go back up to five sentences. It starts looking one sentence back, meaning it will 

not resolve to things in the same sentence. 

• "A dog sleeps. A cat eats. The cat runs. The cat jumps. The cat shakes. The dog wakes." "The 

dog" refers to "A dog". 

• "The woman knew the man was watching the woman." "The woman" does not resolve to "the 

woman". 

Recency is prioritized over matching to a subject. 

• "A dog sleeps. A cat eats. The cat runs. The cat jumps over a dog. The cat shakes. The dog 

wakes." "The dog" refers to the dog that was jumped over, not the dog that sleeps. 

A.7 Verb Coreference 

Verbs will corefer as long as the verbs are the same type action and there are no role relation conflicts, 

meaning that anything in the same role relation slot has to also corefer. 

• "The water flows into a bucket. The water flows quickly." "Flows" are coreferent. 

• "The lava flows into a bucket. The water flows quickly." No coreference, because 

primaryObjectMoving is different in each case. 
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A.8 Things that do not look for other referents 

• Pnames map to themselves. 

• Indefinite references ("A cat") map to themselves. 

• References to the listener ("you") map to the LISTENER token. 

B. Selected Corpus Texts 

Chapter 16 of Sun Up to Sun Down 

Original Text 
Simplified Text 

Now that we've examined all the elements of a 

solar heating system, let's see how it operates 

during a typical winter day. We examined the elements of a solar heating system. 

 

We will examine the solar heating system operating 

during a typical day. 

Right now we'll consider only collecting and 

storing heat; later we'll see how we use the 

stored heat.  

Now, we will consider collection of heat and storage 

of heat. 

 

After that, we will consider using the stored heat.  

We'll also follow the operation of our rainwater 

collecting apparatus so comparisons can be made 

between the two at various stages. 

We also compare the rainwater collection system and 

the solar heating system.  

  Let's assume that both collecting systems begin 

the day partly full. 

At the start of each day, the solar heating system is 

semifull.  

 

At the start of each day, the rainwater collection 

system is semifull.  

For example, in the rainwater collector, there 

might have been some rainwater left from 

previous rain. 

The rainwater collection system could have some 

rainwater in it.  

In the solar collecting system, we'll assume the 

heat storage tank is still warm from the previous 

day's collection. 

The solar heating system's heat storage is warm 

because it collected heat during the previous day.  

In the rainwater apparatus, the check valve has 

closed to keep the stored water from leaking out.  

In the rainwater collection system, the valve closes to 

prevent the flow of the stored water.  

No rain is falling, and any water in the pipe has 

long since leaked out.  The rain is not falling. 
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The water in the pipe has leaked out. 

As for the solar heater, the sun has not yet risen.  The sun has not yet risen on the solar heating system. 

The collector, which has been exposed to the 

cold night air, is much colder than the heat 

storage tank.  

The solar collector was exposed to the cold air at 

night. 

 

Because of this, the solar collector's temperature is 

lower than the heat storage tank's temperature. 

The heat storage is warmer than the outdoors 

because it still contains heat.  The heat storage contains heat. 

 

Because of this, the heat storage's temperature is 

greater than the air's temperature. 

The controller had sensed that the collector was 

colder than the heat storage tank and shut off 

the pump, preventing the storage tank from 

cooling. 

The control device sensed that the heat storage's 

temperature was greater than the solar collector's 

temperature.  

 

Because of this, the control device shut off the pump. 

 

This prevented the cooling process of the heat 

storage. 

  As the sun rises, the collector starts to get a little 

warmer.  The height of the sun rises. 

 

This increases the solar collector's temperature. 

But since a south-oriented collector does not face 

the sun early in the morning, not much solar 

radiation is absorbed. A solar collector faces south. 

 

In the morning, the solar collector is not facing the 

sun. 

 

Because of this, the amount of sunlight absorbed is 

low. 

 

The solar collector absorbs the sunlight. 

The collector will get warmer, but not as warm as 

the heat storage. The solar collector's temperature increases.  

 

The heat storage's temperature exceeds the solar 

collector's temperature. 

Since the collector is still colder than the storage 

tank, the controller wo not turn on the pump.  

Because the heat storage's temperature exceeds the 

solar collector's temperature, the control device does 

not turn on the pump. 

Of course, the collector is a little warmer than the 

outdoors, so it loses heat through its glazing.  

Because the solar collector's temperature exceeds 

the air's temperature, heat leaves the solar collector 
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through the glaze. 

In fact, it loses all the heat absorbed by the 

collector: since none is saved, all of the incoming 

heat is lost. The heat in the solar collector leaves.  

 

No heat in the solar collector remains. 

 

The solar collector does not collect heat. 

  For the rainwater apparatus to be analogous to 

our solar collector, let's suppose that it starts to 

drizzle on the rainwater collecting tray.  

The rainwater collection system is like the solar 

heating system.  

 

Rainwater falls onto the rainwater collection tray. 

Since little rainwater is being collected, the water 

in the collection pipe does not get as deep as the 

storage depth.  The amount of captured rainwater is low.  

 

Because of this, the depth of the water in the storage 

tank exceeds the depth of the water in the pipe. 

No rainwater flows into storage, and efficiency is 

zero-all the rain captured by the tray leaks away. Rainwater does not flow into the storage tank.  

 

The rain captured by the tray leaks away. 

  

Until the temperature of a collector gets hotter 

than the storage tank, no heat is collected.  

The system does not capture heat, when the heat 

storage's temperature exceeds the solar collector's 

temperature.  

Often on cloudy days, a solar collector does not 

collect any heat whatsoever, just as when the sun 

first rises in the morning not enough solar 

radiation falls on the collector to make its 

stagnation temperature hotter than the storage 

tank's.  

During a cloudy day, a solar collector does not 

capture heat.  

 

Similarly, when the sun is low, the amount of solar 

radiation on the solar collector is low. 

 

Because of this, the heat storage's temperature 

exceeds the solar collector's stagnation temperature. 

The heat leaks away from the collector as fast as 

it is absorbed.  

The rate of heat flow from the solar collector equals 

the rate of absorption of heat.  

The cold temperature outdoors aggravates the 

situation, since the incoming solar radiation must 

further raise the collector's temperature so that 

it equals the storage temperature. The air is cold.  
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This increases the distance between the temperature 

of the solar collector and the temperature of the heat 

storage. 

 

This increases the amount of necessary solar 

radiation.  

  As the sun gets higher in the sky, its radiation 

strikes the collector more and more head-on, and 

more solar radiation is absorbed by the collector 

plate.  

As the height of the sun increases, the amount of 

solar radiation on the solar collector increases. 

Eventually the collector plate gets hotter than the 

storage tank.  

Eventually, the solar collector's temperature exceeds 

the heat storage's temperature.  

When it does get hotter, the pump controller 

senses the temperature difference between the 

collector and the storage tank and turns on the 

pump.  

The control device senses the temperature difference 

between the solar collector and the heat storage.  

 

This causes the control device to turn on the pump. 

With pump water flowing, some of the heat 

absorbed by the collector is moved into storage: 

water flowing from storage is heated as it passes 

through the collector.  The water in the pump flows. 

 

Because of this, the solar collector's heat moves to 

the heat storage. 

 

Water flows from the storage tank to the solar 

collector. 

 

The water is heated in the solar collector. 

Warm water from the collector further heats up 

the storage tank.  

Warm water from the solar collector increases the 

temperature of the heat storage. 

Now not all the collector's heat is lost, since some 

of it is going into storage. 

Heat flows from the solar collector to the heat 

storage.  

 

Because of this, heat is saved.  

  In the rainwater collection system, let's suppose 

the rain increases from a drizzle to a light rain; 

this is analogous to more sunshine being 

absorbed by the solar collector.  

The amount of rain that falls on the rainwater 

collection system increases.  

 

That increase is like an increase of the amount of 

solar radiation on the solar collector. 

With more rainwater collected and flowing down 

the pipe, the pipe's water depth gets higher than The amount of rainwater in the pipe increases. 
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the storage water depth.  

 

Because of this, the depth of the water in the pipe 

exceeds the depth of the water in the storage tank. 

The check valve opens and not all the rainwater is 

lost through the leak, since some is flowing into 

storage. The valve opens. 

 

Because of this, the rainwater flows into the storage 

tank. 

  In the late morning the sun faces the collector 

nearly head-on; and much more solar radiation is 

absorbed by the collector plate.  

During the late morning, the sun faces the solar 

collector directly.  

 

Because of this, the solar collector absorbs extra solar 

radiation. 

With the pump on, warm water from storage is 

pumped through the collector, where it is further 

heated.  The pump is turned on. 

 

Because of this, warm water from the storage tank 

flows through the solar collector. 

 

The water's temperature increases in the solar 

collector. 

It returns to the storage tank hotter and 

continues to heat the tank. The water is hot when it returns to the heat storage.  

 

Because of this, the water increases the temperature 

of the heat storage. 

The collector always stays a little hotter than the 

storage tank, so the controller always keeps the 

pump on.  

The solar collector's temperature exceeds the heat 

storage's temperature.  

 

Because of this, the pump is turned on. 

Efficiency is high in the late morning.  Efficiency is high in the late morning.  

The collector receives water from storage, and 

before noon storage is not very hot yet.  

Water flows to the solar collector from the heat 

storage. 

 

The heat storage is cool before noon. 

When the collector is not hot, heat losses are 

low, resulting in high efficiency. 

When the solar collector is cool, leakage of heat is 

low. 

 

This increases efficiency. 

  The rainwater equivalent to the sun hitting the 

collector nearly head-on is a heavy rain.  Heavy rain is like direct sunlight. 
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The incoming water fills up the pipe and flows 

through the check valve into the storage tank. Water fills the pipe. 

 

The water flows through the valve into the storage 

tank. 

Since the pipe's water depth is not too high yet, 

not much rainwater is lost and efficiency is high. 

Because the depth of water in the pipe is low, 

rainwater is saved. 

Because the depth of the water in the pipe is low, 

efficiency is high. 
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Table 15 The facts that were included in a case built using the Sentence-Based Segmentation method. 28 facts were 

included in total, across 4 DRSs. Representations simplified for space and readability. Note that some facts, such as the ones 

that include ObservenceDay and Surgery, are incorrect interpretations of the sentence “We will examine the solar 

heating system operating during a typical day.” Because the interpretations are generated completely automatically, they 

contain some word sense errors. The facts shown here were derived from that sentence and from “We examined the 

elements of a solar heating system” and “At the start of each day, the solar heating system is semifull.”  

Holds in Discourse-DRS-01: 

(evaluee-Direct compare02 rainwater-collection-system03)  

(evaluee-Direct compare02 solar-heating-system01)  

(evaluee-Direct examine04 element05) 

(fullnessOfContainer solar-heating-system01 PartiallyFull) 

(implies-DrsDrs DRS-02 DRS-03)  

(isa compare02 Comparing) 

(isa day06 ObservanceDay)  

(isa examine04 Inspecting)  

(isa group-of-element05 Set-Mathematical)  

(isa solar-heating-system01 SolarHeatingSystem)  

(performedBy compare02 we07)  

(performedBy examine04 we08  

(possessiveRelation day06 start09)  

(startingPoint day06 start09)  

(temporallyIntersects start09 (StartFn be10))  

(willBe DRS-04) 

 

Holds in DRS-02: 

(member element05 group-of-element05) 

 

Holds in DRS-03: 

(isa element05 ElementStuffTypeByNumberOfProtons) 

(isa solar-heating-system01 SolarHeatingSystem) 

(possessiveRelation solar-heating-system01 element05) 

 

Holds in DRS-04: 

(conceptuallyRelated day11 Normal-Usual)  

(evaluee-Direct examine04 solar-heating-system01)  

(isa solar-heating-system01 SolarHeatingSystem)  

(performedBy examine04 we08)  

(temporallySubsumes day11 operate12)  

(isa day11 ObservanceDay)  

(isa examine04 Inspecting)  
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Table 16 . The simplified version of the second paragraph of one document in the corpus containing the example sentence 

from above. 

At the start of each day, the solar heating system is semifull.  

At the start of each day, the rainwater collection system is semifull.  

The rainwater collection system could have some rainwater in it.  

The solar heating system's heat storage is warm because the solar heating system collected heat during the previous day.  

In the rainwater collection system, the valve closes. 

This prevents the flow of the stored water.  

The rain is not falling. 

The water in the pipe has leaked out. 

The sun has not yet risen on the solar heating system.  

The solar collector was exposed to the cold air in the night. 

The heat storage contains heat. 

Because of this, the heat storage's temperature is greater than the air's temperature. 

The control device sensed that the heat storage's temperature was greater than the solar collector's temperature.  

Because of this, the control device shut off the pump. 

This prevented the cooling process of the heat storage. 
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Table 17. Facts generated with Fact-based Segmentation on the example seed, running to a depth 

of 3. 
(holdsIn (DrsCaseFn DRS-3630536315-157727) member element2249 group-of-element2249))  

   (holdsIn (DrsCaseFn DRS-3630536315-157728) (isa element2249 

ElementStuffTypeByNumberOfProtons))  

   (holdsIn (DrsCaseFn DRS-3630536315-157728) (isa solar-heating-system2379 

SolarHeatingSystem))  

   (holdsIn (DrsCaseFn DRS-3630536315-157728) (possessiveRelation solar-heating-system2379 

element2249))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (conceptuallyRelated day3151 Normal-Usual))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (evaluee-Direct examine2184 solar-heating-

system2379))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (isa solar-heating-system2379 

SolarHeatingSystem))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (performedBy examine2184 we2662))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (temporallySubsumes day3151 operate2951))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (isa day3151 ObservanceDay))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (isa examine2184 Inspecting))  

   (holdsIn (DrsCaseFn DRS-3630536319-157731) (isa operate2951 Surgery))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (doneBy collect12189 solar-heating-

system12161))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746)  

     (followsInProgression previous-event13115 day9430 series13116))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (groupGathered collect12189 heat12490))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (isa collect12189 Collecting))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (isa heat12490 ThermalEnergy))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746)  

     (isa solar-heating-system12161 SolarHeatingSystem))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (primaryObjectMoving collect12189 heat12490))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746)  

     (relationInstanceMember primaryObjectMoving collect12189  

       heat12490))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (temporallySubsumes day9430 collect12189))  

   (holdsIn (DrsCaseFn DRS-3630536369-157746) (isa day9430 ObservanceDay))  

   (holdsIn (DrsCaseFn DRS-3630536369-157747) (conceptuallyRelated heat-storage12014 Warm))  

   (holdsIn (DrsCaseFn DRS-3630536369-157747) (isa heat-storage12014 HeatStorage))  

   (holdsIn (DrsCaseFn DRS-3630536369-157747)  

     (isa solar-heating-system11952 SolarHeatingSystem))  

   (holdsIn (DrsCaseFn DRS-3630536369-157747)  

     (possessiveRelation solar-heating-system11952 heat-storage12014))  

   (holdsIn (DrsCaseFn DRS-3630536389-157750) (isa close15268 ClosingAContainerArtifact))  

   (holdsIn (DrsCaseFn DRS-3630536389-157750)  

     (isa rainwater-collection-system5407 RainwaterCollectionSystem))  

   (holdsIn (DrsCaseFn DRS-3630536389-157750) (objectOfStateChange close15268 valve15262))  

   (holdsIn (DrsCaseFn DRS-3630536389-157750)  

     (occursDuring close15268 rainwater-collection-system5407))  

   (holdsIn (DrsCaseFn DRS-3630536389-157750) (isa valve15262 Valve))  

   (holdsIn (DrsCaseFn DRS-3630536412-157756) (conceptuallyRelated rise16227  

       (IntervalAfterFn Now AnIndefiniteAmountOfTime)))  

   (holdsIn (DrsCaseFn DRS-3630536412-157756) (isa rise16227 AscendingEvent))  

   (holdsIn (DrsCaseFn DRS-3630536412-157756) (isa solar-heating-system18243 

SolarHeatingSystem))  
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   (holdsIn (DrsCaseFn DRS-3630536412-157756) (objectMoving rise16227 sun16153))  

   (holdsIn (DrsCaseFn DRS-3630536412-157756)  

     (on-UnderspecifiedSurface sun16153 solar-heating-system18243))  

   (holdsIn Discourse-DRS-01 (doneBy prevent15366 (DrsCaseFn DRS-3630536389-157750)))  

   (holdsIn Discourse-DRS-01 (evaluee-Direct compare5061 rainwater-collection-system5407))  

   (holdsIn Discourse-DRS-01 (evaluee-Direct compare5061 solar-heating-system2379))  

   (holdsIn Discourse-DRS-01 (evaluee-Direct examine2184 element2249))  

   (holdsIn Discourse-DRS-01 (fullnessOfContainer solar-heating-system2379 PartiallyFull))  

   (holdsIn Discourse-DRS-01  

     (implies (DrsCaseFn DRS-3630536369-157746) (DrsCaseFn DRS-3630536369-157747)))  

   (holdsIn Discourse-DRS-01  

     (implies-DrsDrs (DrsCaseFn DRS-3630536315-157727) (DrsCaseFn DRS-3630536315-157728)))  

   (holdsIn Discourse-DRS-01 (isa close15268 ClosingAContainerArtifact))  

   (holdsIn Discourse-DRS-01 (isa compare5061 Comparing))  

   (holdsIn Discourse-DRS-01 (isa day9430 ObservanceDay))  

   (holdsIn Discourse-DRS-01 (isa examine2184 Inspecting))  

   (holdsIn Discourse-DRS-01 (isa flow15431 FluidFlow-Translation))  

   (holdsIn Discourse-DRS-01 (isa group-of-element2249 Set-Mathematical))  

   (holdsIn Discourse-DRS-01 (isa prevent15366 (PreventingFn flow15431)))  

   (holdsIn Discourse-DRS-01 (isa prevent15366 PreventingFromHappening))  

   (holdsIn Discourse-DRS-01 (isa rainwater-collection-system5407 RainwaterCollectionSystem))  

   (holdsIn Discourse-DRS-01 (isa solar-heating-system2379 SolarHeatingSystem))  

   (holdsIn Discourse-DRS-01 (isa sun16153 Sunlight-Direct))  

   (holdsIn Discourse-DRS-01 (isa valve15262 Valve))  

   (holdsIn Discourse-DRS-01 (isa water15524 Water))  

   (holdsIn Discourse-DRS-01 (not (DrsCaseFn DRS-3630536412-157756)))  

   (holdsIn Discourse-DRS-01 (performedBy compare5061 we5052))  

   (holdsIn Discourse-DRS-01 (performedBy examine2184 we2178))  

   (holdsIn Discourse-DRS-01 (possessiveRelation water15524 flow15431))  

   (holdsIn Discourse-DRS-01 (prevents-SitSit (DrsCaseFn DRS-3630536389-157750) flow15431))  

   (holdsIn Discourse-DRS-01 (primaryObjectMoving flow15431 water15524))  

   (holdsIn Discourse-DRS-01 (willBe (DrsCaseFn DRS-3630536319-157731))) 
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C. Full AWSD Stars Corpus 

A star is a massive ball of plasma that gravity holds. 

A star begins as a collapsing cloud of material. 

The star is made primarily of hydrogen and helium and small amounts of heavier elements. 

The star's radiation pressure prevents the collapse of the star. 

The star then evolves into a degenerate form, and the star sends a portion of its matter into space. 

The star forms a new group of stars with a higher proportion of heavy elements. 

The star that is near to the Earth is the Sun. 

When the Sun goes down, we can see another star in the night sky. 

The sun is an example of a star like that. 

A medium star that explodes transforms into a neutron star. 

She turned into a successful star as a young adult. 

The broken ankle kept the star player away from the field for months. 

The United States was the land where I could turn into a star and get rich. 

He emerged as a league star and his scoring entertained crowds. 

A stage name is a name that a star uses in the place of their real name. 

He was a star goalie for the team. 

He was a left wing and he was the star player. 

He was the biggest music star in the decade. 

His musical skill and his stage personality transformed him into a huge star. 

Rock Hudson was famous for his appearance and he is remembered as a romantic star during the middle 

of the century. 

People think that a star is made in a nebula. 
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When a very big star dies, the star explodes. 

A red giant is a very big star. 

Stellar evolution is the study of a star changing over time. 

It contains diverse information about star movement and eclipses. 

It is formed, when a star like the sun sends out atoms. 

Any star in the physical universe can be involved in a star impact. 

This can happen, when fusion is active in the star. 

This can happen, when the star is dead and fusion stops. 

The star is not for correcting for the rotation of the Earth. 

The star is a style icon that is famous for her beautiful hair. 

He was a star player at this time. 

Then he arrived and turned into a huge star in the league. 

He was the team's star goalie. 

She was in her first television series and she turned into a star in this role. 

There a staff member saw that she was a potential star. 

His criterion is a star's name's value for getting people to movie theaters. 

A female star is valuable, when she is hired with a male star. 

He said that obtaining a valuable star is difficult, because a star like that is rare. 

He developed a method to measure the value of a star in a film. 

The star is used to correct for waves in the Earth's atmosphere. 

A compact star that is not a black hole is a degenerate star. 

This means that the star can be viewed from the Earth's surface. 

A giant star's size exceeds an ordinary star's size. 
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A star turns into a giant, when the hydrogen for fusion at its center disappears. 

An exotic star is a compact star. 

The star is in a late period in the evolution of some stars. 

The star forms, when a red giant star loses its outer hydrogen layers. 

Vega is the brightest star in Lyra. 

It is the second brightest star in the northern celestial hemisphere. 

When an actor is the main actor in a movie, he is the star of the movie. 

He was a regular star of movies and television. 

He is remembered by later audiences as the star of the television series. 

He was the star of The Untouchables, and he served as the host of a mystery show. 

He played a law enforcement officer in Florida in a boat that was the star of the show. 

She made her Broadway debut as the star of the musical. 

The white barber is the star of the shop, and he feels that he deserves the star treatment. 

They learned to accept him, and he is the star barber at the shop. 

She is the star of her own film where she moves to Atlanta and her daughter attends a private music 

school. 

He is known as the star of the ABC sitcom and as a host of It's Showtime at the Apollo. 

With Arcturus and Sirius, the star is one of the brightest stars in the Sun's neighborhood. 

Vega is the second star that was photographed. 

It was the first star that had its waves recorded. 

It was the first star that had its distance estimated with diagonal measurements. 

In a supernova, a star depletes its nuclear fuel and explodes. 

If a star is large, then it transforms into a black hole. 
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If the star is small, then it will form a white dwarf. 

A white dwarf is a star. 

The color of a star indicates the heat of the star. 

A white star is like the sun. 

A blue star's temperature exceeds the sun's temperature. 

She was the star of an American reality television series. 

This serial was about the life of a Russian spy portrayed by the lead Russian star. 

She played a small but significant role in a Russian hit film with another great Russian star. 

An actress received the attention of the star of the theater. 

He is an American professional skateboarder and was the star of an MTV reality show. 

People may think the star of the show is the character, but the key element in telling the story is the 

vehicle. 

He is known primarily as the star of the FOX television family sitcom. 

He acted on the stage and television in Mexico, and he turned into a modest star. 

The performing stopped the show, and Ricky Martin received unexpected applause, and the star was 

introduced. 

He was ready to shatter the record of Wayne Gretzky, and he was the star in the previous year's game 

and would be the star in next year's game. 

A red star's temperature is lower than the sun's temperature. 

This heat is from the heat that was produced during the star's collapse. 

This stays after the star's heat and light have disappeared. 

It is the brightest star in the southern Centaurus constellation. 

A red giant is a very big star, and its weight is like the sun's weight. 
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A star changes hydrogen into helium with nuclear fusion. 

The star's outer layer expands. 

The star will get brighter. 

Because the outside of the star will get bigger, the energy will be spread over a much larger area. 

He thought that the star was moving from the earth. 

He thought that the movement caused the star's color changes. 

A planet is a large object that orbits a star. 

He was the star of William Shakespeare's theater company. 

She was the star of a sketch comedy series that her friend created. 

He was the star of the zoo in Berlin, Germany. 

She was the first killer whale that survived in a tank, and she was the star of a very popular killer whale 

show at SeaWorld in San Diego. 

He was the star and he was the only regular actor of this series. 

She was the star of the ABC television show. 

He wrote and directed film and television projects, and he was the star of the television series. 

When he graduated, he was the star of Ohio's football team. 

In the first game between Texas and Oklahoma, He was the throwing star in a win for Texas. 

D. Full Example FBS Case 

(holdsIn (DrsCaseFn DRS-3630536389-157750)  

  (isa close15268 ClosingAContainerArtifact))  

(holdsIn (DrsCaseFn DRS-3630536389-157750)  

  (isa rainwater-collection-system5407 RainwaterCollectionSystem))  

(holdsIn (DrsCaseFn DRS-3630536389-157750)  
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  (objectOfStateChange close15268 valve15262))  

(holdsIn (DrsCaseFn DRS-3630536389-157750)  

  (occursDuring close15268 rainwater-collection-system5407))  

(holdsIn (DrsCaseFn DRS-3630536389-157750) (isa valve15262 Valve))  

(holdsIn (DrsCaseFn DRS-3630536443-157760)  

  (containedObject contain23805 heat23844))  

(holdsIn (DrsCaseFn DRS-3630536443-157760)  

  (containingObject contain23805 heat-storage23789))  

(holdsIn (DrsCaseFn DRS-3630536443-157760)  

  (isa contain23805 ContainingSomething))  

(holdsIn (DrsCaseFn DRS-3630536443-157760)  

  (isa heat-storage23789 HeatStorage))  

(holdsIn (DrsCaseFn DRS-3630536443-157760)  

  (isa heat23844 ThermalEnergy))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (comparativeRelation be24024  

(Kappa (?larger ?smaller)  

   (largerThan ?larger ?smaller hasEvaluativeQuantity))))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (comparee be24024 temperature25970))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (comparer be24024 temperature25265))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (isa be24024 ComparisonEvent))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  
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  (isa heat-storage23789 HeatStorage))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (isa solar-collector23314 SolarPanel))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (isa temperature25265 Temperature))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (isa temperature25970 Temperature))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (possessiveRelation heat-storage23789 temperature25265))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (possessiveRelation solar-collector23314 temperature25970))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (temperatureOfObject heat-storage23789 temperature25265))  

(holdsIn (DrsCaseFn DRS-3630536459-157764)  

  (temperatureOfObject solar-collector23314 temperature25970))  

(holdsIn (DrsCaseFn DRS-3630536459-157765)  

  (isa control-device24203 ControlDevice))  

(holdsIn (DrsCaseFn DRS-3630536459-157765)  

  (isa sense24220 Perceiving))  

(holdsIn (DrsCaseFn DRS-3630536469-157768)  

  (member pump27378 group-of-pump27378))  

(holdsIn (DrsCaseFn DRS-3630536469-157769)  

  (isa pump27378 Pump-TheShoe))  

(holdsIn (DrsCaseFn DRS-3630536469-157770)  

  (implies (DrsCaseFn DRS-3630536459-157764)  
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(DrsCaseFn DRS-3630536459-157765)))  

(holdsIn (DrsCaseFn DRS-3630536483-157773)  

  (causes-ThingSit (DrsCaseFn DRS-3630536469-157770) shut-off26323))  

(holdsIn (DrsCaseFn DRS-3630536483-157773)  

  (implies-DrsDrs (DrsCaseFn DRS-3630536469-157768)  

(DrsCaseFn DRS-3630536469-157769)))  

(holdsIn (DrsCaseFn DRS-3630536483-157773)  

  (isa control-device24203 ControlDevice))  

(holdsIn (DrsCaseFn DRS-3630536483-157773)  

  (isa group-of-pump27378 Set-Mathematical))  

(holdsIn (DrsCaseFn DRS-3630536483-157773)  

  (isa shut-off26323 ShuttingOffSomething))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (causes-ThingSit (DrsCaseFn DRS-3630536443-157760) be24024))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (causes-ThingSit (DrsCaseFn DRS-3630536469-157770) shut-off26323))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (doneBy prevent15366 (DrsCaseFn DRS-3630536389-157750)))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (doneBy prevent29988 (DrsCaseFn DRS-3630536483-157773)))  

(holdsIn  
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  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (implies (DrsCaseFn DRS-3630536459-157764)  

(DrsCaseFn DRS-3630536459-157765)))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (implies-DrsDrs (DrsCaseFn DRS-3630536469-157768)  

(DrsCaseFn DRS-3630536469-157769)))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (in-UnderspecifiedContainer water15524 pipe15803))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa be24024 ComparisonEvent))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa close15268 ClosingAContainerArtifact))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa contain23805 ContainingSomething))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa control-device24203 ControlDevice))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa cooling-process30191 CoolingProcess))  
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(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa flow15431 FluidFlow-Translation))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa group-of-pump27378 Set-Mathematical))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa heat-storage23789 HeatStorage))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa heat23844 ThermalEnergy))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa leak15872 ExitingAContainer))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa pipe15803 Pipe-SmokingDevice))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa prevent15366 (PreventingFn flow15431)))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa prevent15366 PreventingFromHappening))  

(holdsIn  
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  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa prevent29988 (PreventingFn cooling-process30191)))  

(holdsIn  

  (FactsFromReadingMtFn Reading-of-SUSD-Simplified-Jan2015-02)  

  (isa prevent29988 PreventingFromHappening))  

(holdsIn  

  DiscourseInterpretation-01  

  (isa rainwater-collection-system5407 RainwaterCollectionSystem))  

(holdsIn  

  DiscourseInterpretation-01  

  (isa shut-off26323 ShuttingOffSomething))  

(holdsIn  

  DiscourseInterpretation-01  

  (isa solar-collector23314 SolarPanel))  

(holdsIn  

  DiscourseInterpretation-01  

  (isa store15498 StoringSomething))  

(holdsIn  

  DiscourseInterpretation-01  

  (isa valve15262 Valve))  

(holdsIn  

  DiscourseInterpretation-01  

  (isa water15524 Water))  

(holdsIn  

  DiscourseInterpretation-01  
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  (objectActedOn store15498 water15524))  

(holdsIn  

  DiscourseInterpretation-01  

  (objectMoving leak15872 water15524))  

(holdsIn  

  DiscourseInterpretation-01  

  (objectOfStateChange close15268 valve15262))  

(holdsIn  

  DiscourseInterpretation-01  

  (occursDuring close15268 rainwater-collection-system5407))  

(holdsIn  

  DiscourseInterpretation-01  

  (possessiveRelation heat-storage23789 cooling-process30191))  

(holdsIn  

  DiscourseInterpretation-01  

  (possessiveRelation water15524 flow15431))  

(holdsIn  

  DiscourseInterpretation-01  

  (prevents-SitSit (DrsCaseFn DRS-3630536389-157750) flow15431))  

(holdsIn  

  DiscourseInterpretation-01  

  (prevents-SitSit (DrsCaseFn DRS-3630536483-157773)  

cooling-process30191))  

(holdsIn  

  DiscourseInterpretation-01  
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  (primaryObjectMoving flow15431 water15524)) 
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E. ADA Evaluation Questions 

Passage/Q 

Neith

er 

Just 

Analogy 

Just 

Background Both Question 

Sound - 01 

Ball-Sound-

Original 0 0 0 1 

When a sound hits a pillow, 

does it bounce back? 

Sound - 02 

Ball-Sound-

Original 0 0 0 0 

When a sound hits a sidewalk, 

does it bounce back? 

SUSD01 - 01 

Gold-Mine-Solar-

Original 1 1 1 1 

What happens to the solar 

heating system if the value of 

electricity falls? 

SUSD01 - 02 

Gold-Mine-Solar-

Original 0 0 0 1 

What happens to the man with 

the solar heating system if the 

value of electricity falls? 

SUSD01 - 03 

Gold-Mine-Solar-

Original 0 1 0 1 

Is acquiring solar energy 

beneficial if solar collectors 

cost much? 

SUSD02 - 01 

Bucket-Brick-

Original 0 0 0 1 

The disappearance of what 

causes the heat to stop exiting 

the brick? 

SUSD0601 - 01 

Water-Storage-

Heat-Storage-

Original 0 0 0 1 

Decreasing what causes a 

brick to be able to hold less 

heat? 

SUSD0602 - 01 

Phase-Change-

Materials- 0 0 0 0 

At the wax's melting point what 

happens to it's temperature? 
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Original 

SUSD07 - 01 

Faucet-Furnace-

Original 0 0 0 1 

What marks the target 

temperature of the house? 

SUSD08 - 01 

Leak-Insulation-

Original 0 1 0 1 

What reduces the loss of heat 

from the house? 

SUSD10 - 01 

Rain-Sunlight-

Original 0 0 0 0 

If the sunlight falls straight 

down how does the solar 

collector lie? 

SUSD10 - 02 

Rain-Sunlight-

Original 0 0 0 1 

What part of the solar collector 

points towards the sunlight? 

SUSD11-01 - 

01 

Stagnation-

Stagnation-

Original 0 0 0 1 

What fills to cause the heat to 

leak quickly in a solar 

collector? 

SUSD11-01 - 

02 

Stagnation-

Stagnation-

Original 0 1 0 1 

What part of a solar panel is 

like the tray in the rain 

collection system? 

SUSD11-02 - 

01 

Intensity-Rain-

Sunlight-Original 0 1 0 1 

What situation will cause a low 

stagnation temperature to 

balance the intake of solar 

radiation? 

gbw08 - 01 0 0 0 1 

What traps the thermal energy 

of the planet? 

gbw08 - 02 0 0 0 0 What covers the planet? 
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Atmosphere303

1 - 01 

Atmosphere-

Greenhouse-

Original 0 1 0 1 

What part of the atmosphere is 

like the glass of a 

greenhouse? 

Atmosphere303

1 - 02 

Atmosphere-

Greenhouse-

Original 0 0 0 1 

What is the temperature 

outside the atmosphere like? 

Atmosphere303

1 - 03 

Atmosphere-

Greenhouse-

Original 0 1 0 1 

In the atmosphere, what is like 

the vegetation of the 

greenhouse? 

Cell - 01 0 1 0 1 

Food in a cell is like what in a 

power plant? 

Cell - 02 0 0 0 1 

What is used to power the 

cell? 

Total 1 8 1 18 

Score 0.045 0.364 0.045 0.818 

 


